
Abstract

Elementary number theorists are familiar with two major 
classes of digits n of a number base r. The divisor counting 
function enumerates all divisors n  r and the Euler totient 
function counts all totatives n  r. A set of “neutral digits,” nei-
ther divisors of nor coprime to r are investigated. Two types 
of neutral digits are proved to exist. Methods of construction 
and quantification of such digits are introduced.
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1. Introduction
This work regards possible relationships between digits n 

of a number base r. This paper is the first of a series of papers 
and articles examining the nature and practical application of 
number bases. Thus, we will employ the variables mentioned 
rather than the usual variables seen in elementary number 
theory to convey the equivalent of digits and number bases.  

A digit is a positive integer 0 < n ≤ r, where the symbol 
“0” (i.e., zero) symbolizes congruence with r. Observe that in 
the decimal number 20, the digit zero in the rightmost place 
simply signifies that the quantity twenty is congruent with 
101. When the digit 0 stands alone, the symbol “0” stands for 
actual zero. We will ignore the case where “0” connotes actual 
zero, since this produces complications. Thus in this paper, 
the digit 0  r. [1] The digit ω = (r – 1) is the greatest and final 
digit of base r. Thus the “digit range” of base r is {0, …, ω}, 
includes all possible digits of r, and numbers r elements. 

0 1 2 3 4 5 6 7 8 9

Figure 1.1. The range of digits n of base r = 10.

A number base or radix is a positive integer r ≥ 2. [2] To be 
sure, a radix need not be confined to positive integers, but for 
the sake of this study, we’ll focus on the case where r is strictly 
a positive integer ≥ 2.

Let’s review some basic aspects of elementary number 
theory before exploring the relationship of digits and number 
bases. We will presume a knowledge of primes [3, 4, 5, 6], com-
posites [7, 8, 9, 10, 11], and units [12, 13, 14]. Familiarity with the three 
relationships n  r (n divides r evenly, or n is a divisor of r),  

n  r (n does not divide r evenly, or n is not a divisor of r), and 
n  r (n is coprime to r, or n is relatively prime to r) is also 
important to this investigation. Note that in this paper, we will 
use the term “coprime” adjectivally when discussing a digit of 
r, and use the noun “totative” for a digit which is coprime to r. 
We will use the term “factor” at times exclusively for divisors 
of digits when contrast needs to be made between factors of a 
digit and divisors of r. Numbers considered in this paper are 
generally positive integers, except the number r½, the square 
root of r.

Some observations regarding prime numbers should be 
kept in mind. Consider an arbitrary prime p and a larger ar-
bitrary positive integer r. The prime digit p must either be a 
divisor of r or coprime to r [15]. A prime base p is the product 
of its trivial divisors {1, p} and is coprime to all numbers n < p, 
including n = 1. By these observations, two things are clear: 

Prime digits 1.	 p must either be divisors or totatives of 
an arbitrary number base r. We need not examine 
prime digits to determine if they are neutral.

No neutral digit can exist for a prime base 2.	 p. We need 
not consider the existence of neutral digits for prime 
bases; they do not exist.

Therefore, neutral digits must be composite and must exist 
only in composite bases.

Three formulæ prove essential in this investigation. The 
first is the standard form of prime decomposition denoting 
the distinct prime divisors of r and their exponents α [16]. Let 
i and k be positive integers with 1 ≤ i ≤ k. Let pk be the k-th 
distinct prime divisor of r, and the integer αi ≥ 1 be the multi-
plicity [17] of the distinct prime divisor pi in r.

(1.1)	 r = p1
α1 p2

α2… pk
αk

	 (α1 > 0, α2 > 0, …, αk > 0, p1 < p2 < … < pk)

The second key formula relates a divisor d with a divisor’s 
complement d′, both the divisor and its complement being 
positive integers. [18]

(1.2)	 r = d · d′

Let the integer 1 ≤ δi ≤ αi be the multiplicity of each of the base 
r’s distinct prime divisors pi in the divisor d. Each divisor d 
thus has a standard form prime decomposition 

(1.3)	 d = p1
δ1 p2

δ2… pr
δr

	 (p1 < p2 < … < pk)

Formulæ specific to certain aspects of this paper will be intro-
duced later.
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2. The Existence of Neutral Digits.
Let D be the set of divisors of r, and T be the set of totatives 

of r. Let d  D be a positive integer d  r and t  T be a positive 
integer t  r. There are two well-known functions which count 
the number of divisors in the set D and totatives in the set T. 
Through examination of the behavior of these functions, we 
can see that there exist integers 0 < s < r for some values of r 
that are neither divisors of nor coprime to r. In the case of r as 
a number base, these numbers s are digits, because these are 
less than or equal to r, yet still positive. Thus, we will refer to 
such numbers s as “neutral digits”.

Figures 1.2 and 1.3 show the digits d  r and t  r respec-
tively, given r = 10.

0 1 2 3 4 5 6 7 8 9

Figure 1.2. The divisors d of base r = 10, shown in red.

0 1 2 3 4 5 6 7 8 9

Figure 1.3. The totatives t of base r = 10, shown in blue.

The divisor counting function.

The divisor counting function, σ0(r), counts the number 
of positive divisors of the integer r [19, 20]. Let p denote a prime 
number. Then σ0(p) = 2, since all prime numbers possess the 
trivial divisors {1, p} [21]. Because σ0 is a multiplicative func-
tion [22], we can produce σ0 for any number r given its prime 
decomposition in standard form given by formula (1.1). Let i 
and k be positive integers with 1 ≤ i ≤ k.

(2.1)	 σ0(r) =  
k

Π
i = 1

 (αi + 1) = (α1 + 1)(α2 + 1)…(αk + 1).

The divisor counting function counts an increasingly small 
proportion of the digits of base r as r increases. Observe that 
every distinct prime divisor pi contributes a factor (αi + 1) to 
formula (2.1), regardless of the magnitude of pi itself. The val-
ue of each factor depends on the multiplicity αi of each prime 
divisor pi. We will show that there is at least some “room” for 
other types of digits by examining the behavior of the divisor 
counting function σ0(r).

Theorem 2.1. Let the positive integer r ≥ 2. The divisor count-
ing function σ0(r) < r for all values of r > 2, and σ0(r) = r for 
r = 2.

Lemma 2.1.1. Let the integer i = 1 and the multiplicity αi = 1 
for all pi. The number of divisors for all prime numbers is 2. 

Proof. We can rewrite formula (2.1) as 

(2.2)	 σ0(r1) = (α1 + 1) = (1 + 1) = 2

The two divisors are {1, r}, the trivial divisors, which are divi-
sors of every integer. 

Lemma 2.1.2. Let i and k be positive integers with 1 ≤ i ≤ k. 
Let the multiplicity αi = 1 for all pi. The quantity of divisors for 
all squarefree [23] products p1 · p2 · … · pk is 2k. 

Proof. We can rewrite formula (3) as 

(2.3)	 σ0(ri) =  
k

Π
i = 1

 (αi + 1) = 2k

Each prime divisor pi contributes the factor (αi + 1) to 
the equation. Since all multiplicities αi = 1, all the factors  
(αi + 1) = 2. Lemma 2.1.1 shows that a prime r yields 2 divi-
sors. Each additional distinct prime divisor contributes a fac-
tor 2 to formula (2.3). 

Lemma 2.1.3. The quantity of divisors for all primorials r# = 
p1 · p2 · … · pk is 2k. 

The primorial r# is a special case of Lemma 2.1.2. Let j ≥ 1 
be a positive integer. Let π be a prime number such that πj is 
the j-th prime, with π1 = 2. If the prime decomposition of the 
primorial r# is in standard form, then i = j. The least prime 
divisor p1 = π1 =  2. Further, each prime divisor pi is the j-th 
prime number πj. 

(2.4) 	 pi = πj

Since r# is squarefree, we can use formula (2.3) to compute 
its divisor counting function. A primorial r# and a squarefree 
r differ in two possible ways. The primorial will have its least 
prime divisor p1 = 2, while the squarefree r may have an arbi-
trary prime as its least prime divisor. The primorial r# will have 
its i-th prime divisor pi = πj, the j-th prime number, and i = j for 
all prime divisors of r#. The prime divisors pi of a squarefree 
r may be arbitrary, with i not necessarily matching j. Thus a 
squarefree r is a primorial r# if and only if the prime decom-
position is in standard form and i = j for all pi. An example of a 
primorial r# is 30 = 2 · 3 · 5. Each pi = πj and p1 = 2. An example 
of a squarefree r which is not a primorial is 165 = 3 · 5 ·11. The 
least prime divisor p1 ≠ 2 and all prime divisors pi ≠ πj. The 
primorial r# is a special case of a squarefree r. Additionally, the 
primorial rk# is the smallest squarefree rk. 

Proof of Theorem 2.1. Theorem 2.1 can be broken into two 
cases, with one case consisting of two situations.

Case 1. The divisor counting function σ0(r) = r for r = 2. The 
number 2 is prime, thus by Lemma 2.1.1, σ0(r) = 2. The divisor 
counting function σ0(r) = r, since r = 2. Observe that r = 2 is 
the only prime for which σ0(r) = r, since 2 is the smallest prime. 
Thus σ0(r) < r for all prime values of r > 2.

Case 2. The divisor counting function σ0(r) < r for all values of 
r > 2. We need to examine two extreme situations of this case. 
Let k > 1 with 1 < i ≤ k, since Case 1 covers prime values of r.

Situation 1. Let’s consider a composite squarefree r = p1 · p2 
· … · pk

a and r′ = r · pk  = p1 · p2 · … · pk
(a + 1). All the prime divisor 

exponents are equal in both r and r′ except the multiplicities of 
pk. Further, gcd(r, r′) = r, and pk is a common divisor of r and 
r′. Let’s assume a = 1. Since k > 1 and each pi is a distinct prime 
factor, pk > 2. The ratio of the divisor counting functions σ0(r′) 
/ σ0(r) = (a + 1 + 1) / (a + 1) = 3⁄₂, while the ratio r′/r = pk > 2. 
In the situation where a = 1, the ratio r′/r is greater than that 
of σ0(r′) / σ0(r). Through mathematical induction, when the 
multiplicity of the greatest prime divisor is increased by one, r 
grows faster than σ0(r). 
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Situation 2. Now let’s consider a similar situation where the 
multiplicity of the  least prime divisor is manipulated. Let p1 = 2.  
Consider a composite squarefree r = p1

a · p2 · … · pk and r′ = r 
· pk  = p1

(a + 1) · p2 · … · pk
(a + 1). Again all the prime divisor expo-

nents are equal in both r and r′ except the multiplicities of pk. 
Further, gcd(r, r′) = r, and p1 is a common divisor of r and r′. 
Since p1 = 2, the ratios p1

(a + 1)/p1
a = r′/r = p1 = 2. The ratio of 

the divisor counting functions σ0(r′) / σ0(r) = (b + 1) / (a + 
1) = 3⁄₂. In the situation where the multiplicity of the smallest 
possible prime divisor a = 1, the ratio r′/r is greater than that 
of σ0(r′) / σ0(r). Through mathematical induction, when the 
multiplicity of the greatest prime divisor is increased by one, r 
grows faster than σ0(r).

Clearly σ0(r) < r for all composite values of r, since  
r · p > σ0(r · p), regardless of the magnitude of p. Thus, for all r 
> 2, we have σ0(r) < r, and σ0(r) = r if and only if r = 2. 

The Euler totient function.

The Euler totient function φ(r) counts the positive inte-
gers 0 < n ≤ r that are coprime to r [24, 25]. In other words, the 
Euler totient function counts totatives of r. The Euler totient 
function φ(p) for a prime p is:

(2.5)	 φ(p) = p – 1,

since all digits except the digit 0  p itself are coprime to p 
[26]. Through formula (2.5), we observe that φ(p)  p as p  
∞. Consider  a positive composite integer r > 2. The prime 
decomposition of r in standard form is given by formula (1.1). 
Let i and k be positive integers with 1 ≤ i ≤ k. The Euler totient 
function [27, 28] for all composite numbers r is

(2.6)	 φ(r) = r ·  
k

Π
i = 1

 (1 – 1/p
i
) 

	 = r(1 – 1/p1
)(1 – 1/p2

)…(1 – 1/p
k
).

From formula (2.6) we can see that each distinct prime divi-
sor pi contributes one factor (1 – 1/p

i
). The factor is reliant on 

the magnitude of pi but the multiplicity of pi is immaterial in 
each factor. 

If we consider the totient ratio

(2.7) 	 φ(r)/r =  
k

Π
i = 1

 (1 – 1/p
i
)

the base r and the magnitude of its digit range are scaled to 1, 
and we can observe the effects of distinct prime factors on the 
proportion of totatives in base r. (See Figure 2.1.) We only 
need to consider squarefree versions ρ of bases r such that 

(2.8) 	 r = p1
a1 p2

a2… pk
ak    ρ = p1

 p2… pk

e.g., 12 = 22 · 3  6 = 2 · 3 and 360 = 23 · 32 · 5  30 = 2 · 3 · 5.
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Figure 2.1. A plot with φ(r)/r on the vertical axis versus the maximum 
distinct prime divisor pmax on the horizontal axis. (The horizontal axis 
is not to scale.) The pmax-smooth numbers lie along a vertical line at each 
value of pmax. The boundary of minimum values of φ(r)/r defined by pri-
morials is indicated by a broken red line. The boundary of maximum 
values of φ(r)/r defined by primes is shown in blue. All other composite 
numbers r that have pmax as the maximum distinct prime divisor inhabit 
the region between the boundaries. See Figure A1 in the Appendix for a 
plot of φ(r)/r vs. pmax to scale with wider scope.
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Theorem 2.2. Let p1 = 2, the smallest possible distinct prime di-
visor of an arbitrary base r. Let the positive integer k > 1 and pk 
be the largest prime divisor of r. Consider the primorial r# = p1

 

p2… pk. The totient ratio φ(r)/r must be 

(2.9)	  φ(r#)/r# ≤ φ(r)/r ≤ φ(pk)/pk.

Let’s consider two cases: φ(r)/r < φ(pk)/pk and  
φ(r)/r > φ(r#)/r#.

Lemma 2.2.1. Let p1 be the smallest distinct prime divisor of 
base r. Let the positive integer k > 1 and pk be the largest prime 
divisor of r. Bases which are large, single primes pk possess a to-
tative ratio φ(pk)/pk ≥ φ(r)/r for bases r whose largest distinct 
prime divisor is pk.

Proof. Let i and j be positive integers with 1 ≤ i ≤ k and j is 
arbitrary. Let πj be the j-th prime number. Suppose p1 = πj 
and pi = π(j + i – 1). Consider r = p1p2 … pk. The largest distinct 
prime factor pk reduces the ratio φ(r)/r in formula (2.7) by  
(1 – 1/p

k
). Every smaller prime divisor pi reduces the ratio 

somewhat more than pk, since (1 – 1/p
i
) < (1 – 1/p

k
). Since p1 

is the smallest prime divisor of r, it has the greatest effect on 
the ratio φ(r)/r. Thus φ(pk)/pk > φ(r)/r for composite bases 
r whose greatest distinct prime divisor is pk. Suppose p1 = 2. 
Then φ(p1)/p1 = ½. Every prime number pi is larger than 2 
and every prime number pi + 1 > pi, thus (1 – 1/p

i + 1
) > (1 – 1/

p
i
) > ½. Thus φ(p)/p  1 as p  ∞. The larger the prime, 

the greater the proportion of its totatives among its digits. Be-
cause φ(p) = p – 1, φ(p)/p will never reach 1, as there will 
always be 1 non-totative digit, p. It is clear that if r = pk (i.e., 
r is a prime pk) then φ(pk)/pk = φ(r)/r. Therefore, φ(pk)/pk 
≥ φ(r)/r for bases r that have  pk as the largest distinct prime 
divisor. 

Lemma 2.2.2. Let i and k be positive integers with 1 ≤ i ≤ k. Let 
p1 = 2, and pi be the i-th prime number. Primorial bases r# pos-
sess a totative ratio φ(r#)/r# ≤ φ(r)/r for arbitrary composite 
bases r whose largest distinct prime divisor is pk.

Proof. There must be k distinct prime divisors of the primorial 
r# by definition. This implies that there are k factors (1 – 1/p

i
), 

each of which reduce the totient ratio somewhat, and none 
of which maintain the ratio. (In other words, the factors each 
must be less than 1). Any arbitrary r ≠ r# must contain one or 
more primes pi, and all the primes pi  that divide r must also di-
vide r#. Thus all the effects on φ(r)/r of every pi  r through the 
factor (1 – 1/p

i
) also occur on φ(r#)/r#. There must be at least 

one pi which does not affect φ(r)/r otherwise r must equal r#, 
as r and r# would then have the same prime decomposition. 
Therefore any r ≠ r# must have φ(r)/r ≥ φ(r#)/r#. 

Proof of Theorem 2.2. From Lemma 2.2.1, we proved that 
φ(pk)/pk > φ(r)/r, while Lemma 2.2.2 supplies a proof that 
φ(r)/r  > φ(r#)/r#. Then we have the relationship described in 
formula (11) for squarefree bases r. It is evident from formula 
(2.6) that the multiplicity α of the distinct prime divisors p of 
base r are immaterial in computing the Euler totient function, 
thus admitting the substitution of all bases r with a squarefree 
version r′ through formula (2.7). Thus formula (2.9) applies to 

all positive integers r ≥ 2. 

From formula (2.9) and the fact that prime bases p cannot 
possess neutral digits, since σ0(p) = 2  φ(p) = p – 1, we can 
deduce that there may be room for neutral digits in composite 
bases. We need to review the nature of the digit 1 and produce 
a neutral digit counting function so that we can better prove 
the existence of neutral digits in composite bases.

The Unit.

It is appropriate to acknowledge observations regard-
ing the digit 1. The digit 1 of all bases r is special and has a 
complement in the digit ω = (r – 1). The digit 1 is a totative 
of every base r since gcd(1, r) = 1. The digit ω = (r – 1) is also 
a totative of every base r, since a positive integer m  (m + 1) 
[29]. If r = 2, then 1 and ω refer to the same totative 1. Thus {1, 
r – 1} are totatives for all r ≥ 2. 

Recall that for all bases r ≥ 2, the digit 1  r. Therefore, the 
digit 1  r   1  r. This implies that the digit 1 is counted by 
both φ(r) and σ0(r). Let’s prove that the digit 1 is unique in its 
status as both a divisor and a totative of r. This would establish 
that φ(r) and σ0(r) are mutually exclusive except in the case 
of the digit 1.

Theorem 2.3 The digit 1 is the only positive integer 0 < n ≤ r 
such that 1  r   1  r.

Proof. Let a positive integer 1 ≤ d < r with d  r. Then gcd(d, 
r) = d. The equation gcd(d, r) = 1 is true if and only if d = 1. 
Thus the cases where d  r and d  r are mutually exclusive 
except in the case of d = 1. The number 1 is thus uniquely both 
a divisor of and coprime to r, since 1 divides all r evenly and 
gcd(1, r) = 1. 

The following formula defines a “countable digits func-
tion” κ(r) that quantifies any digit counted by σ0(p)  φ(p), 
effectively yielding the population of D  T:

(2.10) 	 κ(r) = φ(r) + σ0(r) – 1

which avoids counting the digit 1 twice. The digit 1 is referred 
to as “a unit” [30] since it is neither prime nor composite. The 
digit 1 may well be classified as a unit in terms of relationship 
with r, since for all bases r ≥ 2, 1  r   1  r.

Figure 2.2 illustrates the set of decimal countable digits  
Κ = {0, 1, 2, 3, 5, 7, 9}. Figure 2.3 shows the sets of countable 
digits Κ of bases 2 ≤ r ≤ 16. From these limited charts, it is evi-
dent that there are some digits n in some bases r for which neither  
n  r  nor n  r is true. These digits are neutral digits. Figure 2.4 
illustrates the set S of decimal neutral digits. Figure 2.5 shows all 
neutral digits in number bases between 2 and 16 inclusive.

A Test for Neutral Digits.

We can use gcd(n, r) to test the relationship of the digit n 
to the base r. It is well known that n  r if gcd(n, r) = 1. It fol-
lows from the definition of n  r that gcd(n, r) = n. Since neither  
n  r  nor n  r is true, a neutral digit n will have: 

(2.11)	 1 < gcd(n, r) < n.
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3. The Neutral Digit Counting Function.
The divisor counting function σ0(r) and the Euler totient 

function φ(r) can be used to count neutral digits. 

Theorem 3.1. Let the positive integer r ≥ 2 be a number base. The 
neutral digit function ν(r) is given by the following equation:

(3.1)	 ν(r) = r – κ(r) 

	 = r – [φ(r) + σ0(r) – 1]

	 = r – (  
k

Π
i = 1

 (αi + 1) + r ·  
k

Π
i = 1

 (1 – 1/p
i
) – 1)

Proof. The digit range of r must equal r, thus any catenation 
of functions counting digits of r must be less than r. The di-
visor counting function and Euler totient function yield the 
quantity of divisors and totatives of r, respectively. We must 
subtract 1 from the sum φ(r) + σ0(r) since 1  r   1  r. We 
will tackle the proof using two cases.

Case 1. Let p be an arbitrary positive prime, and suppose r = 
p. No neutral digit can exist for a prime base p. Given Lemma 
2.1.1 and formula (2.5), we have the following:

(3.2)	 p = φ(p) + σ0(p) – 1
	 = (p – 1) + 2 – 1
	 = p – 1 + 1
	 = p

Case 2. Suppose r > 2 and is an arbitrary composite number. 
Theorem 2.1 shows that σ0(r) < r. Formula (2.9) of Theorem 
2.2 shows that the prime base p will have the greatest ratio of 
totatives to digits, and that the presence of smaller primes in 
the prime decomposition of an arbitrary composite base r will 
admit some room for neutral digits in the range of digits of 
some composite number bases r.

In either case, φ(r) + σ0(r) – 1 cannot exceed r. There are 
only r digits for all bases r ≥ 2. Theorem 2.3 proves that digit 
1 is uniquely both a divisor and totative of r. The unit is the 
only digit counted by both φ(r) and σ0(r); otherwise the two 
counting functions are mutually exclusive. Thus the neutral 
digit function ν(r) will reveal the quantity of digits which are nei-
ther divisors of nor coprime to r. 

It is easy to produce large numbers of neutral digits when r 
is a large composite number, however, ν(4) = 0. The number 
4 has 3 divisor digits {0, 1, 2} and two totatives {1, 3}. The-
orem 2.3 proves only the digit 1 should appear in both sets. 
Thus, there is no room in base 4 for neutral digits. We will 
illustrate why this is so below. The number 6 admits a single 
neutral digit 4. The divisor digits of base 6 are {0, 1, 2, 3} and 
the totatives are {1, 5}. Once r ≥ 6, ν(r) generally appears to 
increase, mostly at the expense of σ0(r).	  

This section has shown that there exist neutral digits in ad-
dition to units, divisors, and totatives among digits 0 < n ≤ 
r for at least some composite bases r. Observations indicate 
that the composite number 4 does not possess neutral dig-
its. Larger composite bases r appear to have neutral digits in 
amounts that increase as r increases.

0 1 2 3 4 5 6 7 8 9

Figure 2.2. “Countable” digits κ of base r = 10, shown in color.
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2 0 1

3 0 1 2

4 0 1 2 3

5 0 1 2 3 4

6 0 1 2 3 4 5

7 0 1 2 3 4 5 6

8 0 1 2 3 4 5 6 7

9 0 1 2 3 4 5 6 7 8

10 0 1 2 3 4 5 6 7 8 9

11 0 1 2 3 4 5 6 7 8 9 a

12 0 1 2 3 4 5 6 7 8 9 a b

13 0 1 2 3 4 5 6 7 8 9 a b c

14 0 1 2 3 4 5 6 7 8 9 a b c d

15 0 1 2 3 4 5 6 7 8 9 a b c d e

16 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 1 2 3 4 5 6 7 8 9 a b c d e f

Digit n

Figure 2.3. “Countable” digits κ of bases 2 ≤ r ≤ 16, shown in color.  
Number bases r are arranged along the vertical axis, increasing from top 
to bottom. The digits {0, 1, … , ω} of each base r appear along the hori-
zontal axis. Digits d  r are shown in red, while digits t  r appear in blue. 
The digit 1  r  1  r in all bases, and is colored purple in the chart. The 
digits s of bases r that remain white are neutral digits.

0 1 2 3 4 5 6 7 8 9

Figure 2.4. Neutral digits s of base r = 10, shown in gold.
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2 0 1

3 0 1 2

4 0 1 2 3

5 0 1 2 3 4

6 0 1 2 3 4 5

7 0 1 2 3 4 5 6

8 0 1 2 3 4 5 6 7

9 0 1 2 3 4 5 6 7 8

10 0 1 2 3 4 5 6 7 8 9

11 0 1 2 3 4 5 6 7 8 9 a

12 0 1 2 3 4 5 6 7 8 9 a b

13 0 1 2 3 4 5 6 7 8 9 a b c

14 0 1 2 3 4 5 6 7 8 9 a b c d

15 0 1 2 3 4 5 6 7 8 9 a b c d e

16 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 1 2 3 4 5 6 7 8 9 a b c d e f

Digit n

Figure 2.5. Neutral digits s of bases 2 ≤ r ≤ 16, shown in gold.

Neutral Digits • 5



4. Two Kinds of Neutral Digits.
Recall that digits s that are neither divisors of nor coprime 

to r must be composite.

Theorem 4.1. There are only two kinds of neutral digit.

Let p be an arbitrary prime number, let d  r and t  r. The 
minimum number of primes p necessary to furnish a compos-
ite product is two. Since a prime p  r  p  r we are restricted 
to the following three cases:

	 dd,	 dt,	 tt.

(An alternate way to view this is to consider d representing 
a component which is a homogenous product of prime divi-
sors, and t representing a component that is a homogenous 
product of prime totatives.)

Consider the case “tt”, involving a homogenous product 
of coprime factors

Lemma 4.1.1. A composite digit n that is the homogenous 
product of primes q  r is a composite totative tc if and only if 
1 ≤ n ≤ r. Such a digit tc cannot be a neutral digit since tc  r.

Proof. It is possible that the prime totatives t may be identical 
or distinct. Consider the composite homogenous product 1 < 
n < r. Let the arbitrary positive integer k ≥ 2 and the integer 1 
≤ i ≤ k. Then we have 

(4.1)	 tc =  
k

Π
i = 1

 qi = q1 · … · qk. 

Since each qi  r, their product tc  r. [31] Clearly, the arrange-
ment “tt” simply describes a composite totative tc where r  tc 
since r is coprime to each of the prime divisors qi of tc, and all 
of these prime divisors of tc are prime totatives q of r. 

The definition of a neutral digit is an integer 1 ≤ n ≤ r that 
is neither a divisor of nor coprime to r. Since tc  r, tc cannot 
be a neutral digit. The composite totative tc is counted by the 
Euler totient function φ(r). 

We examine the case “dt”, involving a mixed product of di-
visors and coprime factors.

Lemma 4.1.2. A composite number n that is the mixed product 
of primes p  r and q  r is a neutral digit if and only if 1 ≤ n ≤ r.

We will call this type of neutral digit a “semitotative,” st.

Proof. This is equivalent to the case “dt” above. This case re-
gards a composite 1 < pq < r produced by some prime divisor 
p and prime totative q of r. Since p  r and p  pq, p is a common 
divisor of r and pq. [32] The product pq cannot be coprime to 
r, since gcd(pq, r) = p, and p by definition is prime so p ≠ 1. 
Since q  pq but q  r, pq  r. Clearly, pq is a neutral number.

Suppose pq  r. Let the integer k ≥ 2 and 1 ≤ i ≤ k. Let the 
prime pi  r. A product pq that would divide r would have the 
form pq = p1

δ1 p2
δ2… pk

δk per formula (1.3). Since p is prime, it 
must then be equal to one of the prime divisors pi. By defini-
tion, the prime q  r  q ≠ pi, so pq cannot be represented as 
a product of prime divisors pi. 

[33] The representation would 
need to be pq = p1

δ1 p2
δ2… pk

δk q. Thus, pq  r.

Since pq is a product of primes, pq ≠ 1. 

Additional prime divisors and prime totatives do not af-
fect the relationship of pq with r. Thus the arrangement pq = 
“dt” is a composite number that neither divides r evenly, nor 
is coprime to r. 

The product 1 ≤ pq ≤ r is a digit by definition. A product pq 
> r is not considered a digit of r, thus cannot be a neutral digit 
of r. Thus products 1 ≤ pq ≤ r are a type of neutral digit st  with 
a mixed composition, composed of at least one prime divisor 
p and at least one prime totative q of r. 

Such products pq > r are composite with pq  r and pq not 
coprime to r for the same reasons that apply to 1 < pq < r. Such 
a number pq > r can be called a “semi-coprime number”.

Let’s examine the case “dd”, a homogenous product of 
prime divisors of r. 
Definition 4.1.3. This is equivalent to the case “dd” above. 
Let i and k be integers (1 ≤ i ≤ k). Let the positive primes pi  r. 
Consider a positive composite integer g that is a homogenous 
product of at least 2 arbitrary prime divisors pi of r. Let the 
integer 1 ≤ δi be the multiplicity of each pi in g. Each g thus has 
a standard form prime decomposition

(4.2)	 g =  
k

Π
i = 1

 pi
δk = p1

δ1 p2
δ2… pk

δk

	 (p1 < p2 < … < pk)
Each pi  g  pi  r. Let P be the set of distinct prime divisors pi 
of  r. Then in g, each pi  P. This number g is called a regular 
number. [34, 35] A regular number g is a regular digit in base r if 
and only if 1 ≤ g ≤ r.

Case “dd” thus describes regular digits g of base r. There are 
two variations of this case, predicated on the relationship of at 
least one multiplicity δi and the corresponding αi. Two situa-
tions are possible, 1 ≤ δi ≤ αi and dd  r or δi > αi and dd  r.

The first variation concerns g with 1 ≤ δi ≤ αi. Then the regu-
lar digit g  r, and is thus a composite divisor dc of r. Let the 
integer 1 ≤ δi ≤ αi be the multiplicity of each of the base r’s dis-
tinct prime divisors pi in the divisor d. Each divisor d thus has a 
standard form prime decomposition shown in formula (1.3):

	 d = p1
δ1 p2

δ2… pk
δk

	 (p1 < p2 < … < pk)
Lemma 4.1.4. Let the integer 1 ≤ g be a regular number of r. 
Regular numbers g  r if and only if all δi  ≤ αi.
Proof. Each pi  r  pi  d, thus there must be an integer mi ≥ 1 
such that gcd(d, r) = mipi. Formula (1.2) can be rewritten

(4.3)	 r = d · d′ = pi · mi

for each pi, thus each mi  r. Thus far, a number so constructed 
must be regular, as the formula applying to a divisor (1.3) and 
the formula applying to a regular number (4.2) are in the same 
form. Formula (1.3) restricts the multiplicities 1 ≤ δi ≤ αi. The 
divisor produced by formula (1.3) can also be produced by 
formula (4.2). The divisor d is thus a special case of the regular 
digit g. No number g > r can divide r evenly, since no integer g′ 
can be produced such that r = g · g′. Thus a regular number g  
r implies g < r, thereby g is a digit of r. The regular digit g  r if 
and only if all 1 ≤ δi  ≤ αi. 
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The second variation involves g with δi  > αi. One of the distinct 
prime divisors pi  is “richer” in g than it is in base r. If this proves to 
be a “rich” neutral digit, we will call it a “semidivisor” sd.

Lemma 4.1.5. Let i and k be integers (1 ≤ i ≤ k). Let the positive 
primes pi  r. A homogenous product g of at least two primes pi  
r is a neutral digit if and only if both δi  > αi and 1 ≤ n ≤ r.

Proof. The composite number g must be regular since it can 
be written in the form presented by formula 4.2:

	 g =  
k

Π
i = 1

 pi
δk = p1

δ1 p2
δ2… pk

δk

	 (p1 < p2 < … < pk)

Suppose at least one exponent δi > αi in the prime decomposi-
tion of r. Then the ratio r/g cannot be an integer, which im-
plies g  r. Suppose δ1 = α1 + 1, and the remaining δk = αk. We 
can then rewrite r/g as p1

α1 p2
α2… pk

αk/p1
δ1 p2

δ2… pk
δk, which 

simplifies to p1
α1/p1

(α1 + 1). Our inability to obtain an integer 
from r/g with at least one δi > αi implies g  r. Since no part of 
g is coprime to r, g is not a semitotative. Clearly g is not itself 
coprime to r, since gcd(g, r) ≠ 1. The regular digit g ≠ 1, since 
g is the product of prime numbers. Thus the composite g = p1

δ1 

p2
δ2… pk

δk  with at least one δi > αi must be a second kind of 
regular, neutral digit. 

Proof of Theorem 4.1. Three possible cases of composite 
digits dd, dt, and tt have been studied in Lemmas 4.1.1-4.1.5. 
Lemma 4.1.1 shows that case tt  r, thus does not represent a 
neutral digit. Lemma 4.1.2 shows that case dt describes a neu-
tral digit involving at least one prime divisor and one prime 
totative. Definition 4.1.3 is equivalent to case dd, and is bro-
ken down into two possible situations. Lemma 4.1.4 describes 
one situation where case dd describes regular digits g  r that 
are not neutral by definition. Lemma 4.1.5 describes another 
situation where case dd describes a neutral digit that is a ho-
mogenous product g  r, the product of at least two primes pi 
 r. No other cases nor situations of cases are possible, hence 
there are only two kinds of neutral digit, one described by 
Lemma 4.1.2 and the other described by Lemma 4.1.4. 

Section 4 has demonstrated that there are precisely two 
types of neutral digit. One kind of neutral digit is regular, as 
it is composed only of elements of the set of distinct prime 
divisors of r. This is the semidivisor. The other kind of neutral 
digit is the semitotative, which is the product of at least one 
prime divisor and at least one totative of r. No other type of 
neutral digit is possible.

Figure 3.1 shows the decimal semidivisors {4, 8} and the 
decimal semitotative {6}. Figure 3.2 shows the two types of 
neutral digits for bases between 2 and 16 inclusive.

Given the possibility of only two kinds of neutral digits, 
we can draw a “digit map” for each number base r that shows 
all types of digit relationships with r. We will color-code the 
digits using the convention in Figure 3. Thus the seven com-
binations of composition and relationship, the unit, the prime 
and composite divisor, the semidivisor and the semitotative, 
and the prime and composite totative, are indicated by such 
a digit map.

1

tP

tC

st sd

dC

dP

Legend
1 Unit, 1  r  1  r
d Divisor
sd Semidivisor
st Semitotative
t Totative

Figure 3.

0 1 2 3 4 5 6 7 8 9

Figure 3.1. Semidivisors sd (orange) and semitotatives st (yellow) of base 
r = 10, shown in gold.
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2 0 1

3 0 1 2

4 0 1 2 3

5 0 1 2 3 4

6 0 1 2 3 4 5

7 0 1 2 3 4 5 6

8 0 1 2 3 4 5 6 7

9 0 1 2 3 4 5 6 7 8

10 0 1 2 3 4 5 6 7 8 9

11 0 1 2 3 4 5 6 7 8 9 a

12 0 1 2 3 4 5 6 7 8 9 a b

13 0 1 2 3 4 5 6 7 8 9 a b c

14 0 1 2 3 4 5 6 7 8 9 a b c d

15 0 1 2 3 4 5 6 7 8 9 a b c d e

16 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 1 2 3 4 5 6 7 8 9 a b c d e f

Digit n

Figure 3.2. Semidivisors sd (orange) and semitotatives st (yellow) of 
bases 2 ≤ r ≤ 16, shown in color. The digits {0, 1, … , ω} appear in rows, 
each row a number base r.

0 1 2 3 4 5 6 7 8 9

Figure 3.3. A digit map of base r = 10.
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2 0 1

3 0 1 2

4 0 1 2 3

5 0 1 2 3 4

6 0 1 2 3 4 5

7 0 1 2 3 4 5 6

8 0 1 2 3 4 5 6 7

9 0 1 2 3 4 5 6 7 8

10 0 1 2 3 4 5 6 7 8 9

11 0 1 2 3 4 5 6 7 8 9 a

12 0 1 2 3 4 5 6 7 8 9 a b

13 0 1 2 3 4 5 6 7 8 9 a b c

14 0 1 2 3 4 5 6 7 8 9 a b c d

15 0 1 2 3 4 5 6 7 8 9 a b c d e

16 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 1 2 3 4 5 6 7 8 9 a b c d e f

Digit n

Figure 3.4. A digit map of bases 2 ≤ r ≤ 16, colored according to Figure 3.Neutral Digits • 7



Figure 3.3 is a decimal digit map. Figure 3.4 shows digit 
maps for bases between 2 and 16 inclusive. Table A6 in the 
Appendix shows digit maps for bases between 2 and 60 in-
clusive. A bar graph can be generated showing the content of 
each type of digit in a given base, perhaps called a “digit spec-
trum” for base r. Table A5 in the Appendix shows digit spectra 
for 2≤ r ≤ 60.

5. The Existence of Semidivisors 
and Semitotatives.

We will now attempt to prove the existence of semidivisors 
and semitotatives among composite number bases, recogniz-
ing base 4 and the prime bases will prohibit any neutral digit. 
Before the theorems, let’s gather some necessary tools. 

Suppose r is a positive composite integer that is the 
product of k distinct prime divisors, {p1, p2, … pk}, with  
p1 < p2 < … < pk. Thus p1 is the smallest distinct prime divi-
sor of r. Since a composite r must possess at least one divisor 
less than r½, it follows that p1 must be such a divisor. [36] For-
mula (1.2) shows that each distinct prime divisor d possesses 
a complement d′ such that r = d · d′. Let p1′ be the complement 
to p1. Thus we have:

	 1 < p1 ≤ r½ ≤ p1′ < r. [37, 38] 

Note that p1′ is not necessarily prime, since p1′ = r/p1. Given a 
number base r with at least 3 prime divisors,  p1′ is composite. 
The minimum prime divisor complement p1′ is prime if and 
only if the number of prime divisors of r is two. These relation-
ships will serve as the basis for several proofs that establish the 
existence of neutral digits (semidivisors and semitotatives) 
for certain positive composite integers r.

The Existence of Semidivisors.

A semidivisor is a composite digit sd which possesses at least 
one distinct prime factor p having a multiplicity δ which ex-
ceeds the multiplicity α of p in the prime decomposition of r. 
Since prime bases r do not possess neutral digits, only compos-
ite bases r may have semidivisors. All we need to do is prove a 
digit exists which is a power δ of the smallest distinct prime 
divisor p1 of r that exceeds the multiplicity α of that same divi-
sor in the prime decomposition of r. Let’s test some composite 
bases to prove the existence of semidivisors.

Theorem 5.1. Let the integer k ≥ 2 and 1 ≤ i ≤ k. Suppose  
r = p1 

α1 · p2
α2 ·… · pk

αk, k ≥ 2 and any pi signifies a distinct prime 
divisor of r. Such an r having at least two distinct prime divi-
sors will possess at least one semidivisor sd.

Let’s examine the simplest example of a composite number. 
Suppose r is a positive composite integer that is the product of 
two prime divisors, p1 and p2, where p1 ≤ p2. Since a composite 
r must possess at least one divisor less than or equal to r½, it 
follows that p1 must be such a divisor. Since there are only two 
nontrivial divisors, we can rewrite formula 1.2 (r = d · d′) as  
r =  p1 · p2. Thus 1 < p1 ≤ r½ ≤ p2 < r.

Lemma 5.1.1. Let pi signify a prime divisor of r, and let  

1 ≤ i ≤ 2. All composite bases r = p1 · p2 will possess at least one 
semidivisor sd.

Proof. Consider the case where p1 ≠ p2. Thus the distinct 
prime divisors of r are {p1,  p2} and their multiplicities are both 
1. It follows that neither p1 nor p2 can equal r½ (if either did, 
then both would equal r½ and not be distinct prime divisors.) 
Thus 1 < p1 < r½ < p2 < r. Since r½ >  p1, (r½)2 = r and r > p1

2. 
So the square of p1 must be a digit in base r. Since p1  p1

2  p1 
 r, p1

2 is a regular digit of base r. The prime decompositions 
of {p1

2, r} are {p1
2, p1 · p2}. Since the multiplicity δ1 > α1, p1

2 is a 
regular digit that cannot be a divisor of r. We are left to con-
clude that p1

2 is a semidivisor of r. Thus, all composite bases r 
which are products of two prime divisors will possess at least 
one semidivisor. 

Lemma 5.1.2. Let p be a prime divisor of r. Composite bases 
r = p2 cannot possess semidivisors.

Proof. Let’s consider the case where p1 = p2, thus are the same 
distinct prime divisor p. Then both p1 and p2 must equal r½ 

and we have r = p2. Clearly r has only one distinct prime divi-
sor p which when squared equals r itself, and r  r; both p and 
p2 are divisors of r. Therefore a number base r which is the 
square of a prime divisor p cannot possess semidivisors. 

Lemma 5.1.3. Let p be a prime divisor of base r and α the mul-
tiplicity of that prime divisor. Suppose r = pα. Such an r which is 
a power of a single prime divisor cannot possess semidivisors.

Proof. The set of divisors of  r = pα will be the set of the powers 
of pi, 0 ≤ i ≤ α, that is {1, p, p2, p3, … p(α – 1), pα}. Since r possess-
es only one distinct prime divisor, r is restricted only to the 
powers of p to produce regular digits, and all of these pi, 0 ≤ i 
≤ x are divisors of r. The multiplicity i of p is less than or equal 
to the multiplicity α of p in the integer r. Therefore, a base r 
which is a power of a prime cannot possess semidivisors. 

Lemma 5.1.4. Let the number k of distinct prime divisors 
of r be an arbitrary integer greater than 1 and let the integer  
1 ≤ i ≤ k. All composite bases r = p1 p2… pk will possess at least 
one semidivisor sd.

Proof. Consider the related case where r = p1p2… pk and all 
the p’s are distinct prime divisors. If one of the p’s, say pk, is 
larger than r½, then the product w of the remaining p’s must 
be less than r½. It follows that each of the primes p1… pk – 1 
are smaller than their product w, which itself is less than r½. 
Therefore any of the primes p1… pn – 1 will yield semidivisors 
for r when they are squared, and any composite base r which 
is a product of at least two distinct prime divisors will possess 
at least one semidivisor. 

Proof of Theorem 5.1. Suppose r is a composite number with 
m prime divisors (including repeated prime divisors, thus  
r = 12 = {22 · 3} would present m = 3, while r = 16 = {24} 
would yield m = 4). Suppose also that there exists a minimum 
prime divisor p1 such that p1 ≤ r(1/m). 

Consider the case where r possesses one distinct prime 
divisor p. This implies p1 must be p, since there are no other 
prime divisors which divide r. Suppose there exists a semidivi-
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sor sd where the multiplicity δ > α. Thus we must have at least 
δ = α + 1, since we require any power of p to remain an integer. 
The prime decomposition of r = pα and sd = pδ = p(α + 1). Clearly, 
pα < p(α + 1), thus r < sd, contradicting the definition of a semidi-
visor sd  as being a kind of digit 0 < n ≤ r.

Thus in the case where r possesses a single prime divisor, 
there can be no semidivisor. Lemmas 5.1.2 and 5.1.3 support 
this conclusion.

Suppose r possesses at least two distinct prime divisors  
p1, p2, …, pk with p1 < p2 < … < pk. Consider that the prime 
decomposition of r is written in standard form per formula 
1.1. Suppose δ1 = α1 + 1 for a power of the smallest prime divi-
sor p1

δ. Consider the following cases. In the case of r = p1 · p2 
(the number of distinct prime divisors k = 2), p1 

(α1 + 1) < p1 · p2 
shown by Lemma 5.1.1. In the case of r with k > 2, the number  
p1 

(α1 + 1) · p2 < r shown by Lemma 5.1.4. Thus there exists a 
semidivisor sd for any r = p1 

α1 · p2 
α2 ·… · pk

αk, where k ≥ 2. 

These proofs imply that base 6 is the smallest number base 
that will possess a semidivisor. Digit 4 base 6 is a semidivisor, 
since the distinct prime divisor of 4 is 2, which has a multiplic-
ity 2, exceeding that of the distinct prime divisor 2 in 6. Bases 
2, 3, and 5 are prime and cannot possess neutral digits, thus 
they cannot possess semidivisors. Base 4 is a power of a prime 
and cannot possess semidivisors since the minimum nonuni-
tary power of its smallest prime divisor (22) is a divisor of 4. 
All other squarefree composite bases must possess at least one 
semidivisor.

The Existence of Semitotatives.

A semitotative is a composite digit st which is the prod-
uct of at least one power of a prime divisor p and at least one 
power of a prime totative q of r. Let p1 be the smallest prime 
divisor of r, and let q1 be the smallest prime totative of r. There 
must be a complement p1′ to the minimum prime divisor p1 
such that r = p1· p1′. The following formula produces the small-
est semi-coprime number h1 in base r:

(5.2)	 h1 = p1 · q1. 

If h1 < r, then h1 is a digit, and thus a semitotative s1, since a 
semitotative is a semi-coprime number h < r.  

Since prime bases r do not possess neutral digits, only 
composite bases r may possess semitotatives. The case where 
r = 2 cannot produce semitotatives since 2 does not possess 
prime totatives. The following proofs pertain to the existence 
of semitotatives for composite bases r.

Theorem 5.2. A composite number base r possesses at least 
one semitotative st if and only if q1 < p1′.

Suppose a composite base r possesses a minimum prime 
divisor 1 < p1 ≤ r½, and a minimum prime totative 1 < q1 < 
r. The minimum prime divisor p1 cannot exceed the square 
root of r, since r = p1 · d′. If p1 > r½, then r/p1 would yield a 
d′ < p1, contradicting the definition of p1. A minimum prime 
totative q1 ≠ 1, since q1 is prime by definition. Suppose r½ is 
an integer; a minimum prime totative q1 ≠ r½ since r½  r and 

q1  r by definition. A minimum prime totative q1 ≠ r again 
since by definition q1  r. The divisor pair which includes the 
minimum prime divisor p1 is arranged thus:

(5.3)	 1 < p1 ≤ r½ ≤ p1′ < r, with 1 < q1 < r

It follows that there are three possible configurations of q1, p1, 
and p1′, since q1 cannot equal either of p1 and p1′, otherwise q1  
r and thus contradict the definition of q1:

	 1 < q1 < p1	 p1 < q1
 < p1′	 p1′ < q1 < r.

Let’s examine proofs for each of these cases.

Lemma 5.2.1. Bases r which have a smallest prime totative q1 
where 1 < q1 < p1 have at least one semitotative st.

Proof. Any product s1 < r, since r = p1· p1′ and q1 is less than p1′, 
making s1 is a digit of base r. Thus any r possessing a minimum 
prime totative q1 < p1 will have at least one semitotative s1. In 
the case of an odd composite r, the minimum prime totative 
q1 = 2 will be less than any minimum prime divisor p1, yielding 
a semitotative s1. Note that composite values of r which are 
even cannot have q1 < p1, since 2 is the smallest prime. 

Lemma 5.2.2. Bases r which have a smallest prime totative p1 
< q1

 < p1′ have at least one semitotative st.

Proof. This case has the minimum prime totative q1 interpos-
ing between the minimum prime divisor p1 and its comple-
ment p1′. Note that if p1 = r½, then p1 = p1′ and p1 < q1

 < p1′ is 
impossible. Again, any product s1 = p1 · q1 would be less than r, 
since r = p1 · p1′  q1 < p1′, thus s1 < r, making s1 a digit of base r. 
Thus any r possessing a minimum prime totative q1 such that 
it is greater than its minumum prime divisor p1 but less than 
the complement to its minimum prime divisor p1′ will have at 
least one semitotative smin. 

Lemma 5.2.3. Bases r which have a smallest prime totative  
p1′ < q1 < r cannot possess any semitotative st.

Proof. Since q1 > p1′ and given r = p1 · p1′, any product s1 = p1 · q1 
will exceed r and not be a digit of r. Thus any number base r 
having its smallest prime totative greater than both the mini-
mum prime divisor and its complement will not have semito-
tatives. 

Proof of Theorem 5.2. Let the integers k ≥ 1 and 1 ≤ i ≤ k. 
Let p1 signify the smallest prime (2), p2 the second smallest 
(3), etc., and pk the maximum prime divisor of rk. Suppose 
rk is a primorial, that is, the product of distinct prime factors  
p1, p2, … pk. Such a number rk will then have p1 = 2 and p1′ = rk/
p1= p2, p3, … pk. 

For k = 1, r1 = 2 is itself prime, thus cannot feature neutral 
digits nor semitotatives, which are a kind of neutral digit. 

At k = 2 (r2 = 6), and p1 < p1′ < q1 we have the situation 
described in Lemma 5.2.3. Because 6 is the product of two 
primes, p1′ must be 3 and there are no primes between 2 and 3, 
thus 6 cannot possess semitotatives since q1 = 5 is larger than 
p1′ = 3. (See Figure 5.2 on page 10).

At k = 3 (r2 = 30), there exists a significant difference be-
tween pi = 5 and p1′ = 15, allowing the smallest unrepresented 
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Proof of Case r = 4. When r = 4, the minimum prime divisor 
p1 = 2 = r½, thus p1 = p1′, while the minimum prime totative  
q1 > p1′ (i.e. 3 > 2). The product s1 = p1 · q1 = 2 · 3 exceeds 4. 
Thus 4 cannot possess a semitotative, though it is a composite 
r. Since r = 4 cannot possess a semidivisor as described above, 
such an r is an instance of a composite r that cannot possess 
neutral digits. (See Figure 5.1). 

Proof of Case r = 6. When r = 6, the minimum prime divi-
sor p1 = 2. The complement p1′ = 3, while the minimum 
prime totative q1 = 5 is larger than both. The product  
s1 = p1 · q1 = 2 · 5 exceeds 6. Thus 6 cannot possess a semitota-
tive, though it does possess a semidivisor (i.e., the digit 4).

No prime base r = p can possess semitotatives because neutral 
digits do not exist in prime number bases. Additionally, the 
only prime divisor available is p. Section 2 and the The Euler 
totient function φ(p) for a prime p shown in formula 2.5 show 
that for values 0 < n < r, n  r. All primes p have two positive di-
visors {1, p}. There is no room for semitotatives in prime bases 
p. Thus, semitotatives do not exist for all bases 2 ≤ r < 8. 

Theorem 5.4. At least 1 neutral digit s exists for all composite 
number bases r > 6.

Proof. Theorem 5.1 shows that there exist at least one semi-
divisor sd for all squarefree composite integers r > 2. Theorem 
5.2 proves that there exists at least one semitotative st for some 
positive composite values of r if and only if the minimum 
prime totative q1 < p1′, the complement of the minimum prime 
divisor of r. Corollary 5.3 shows that semitotatives do not exist 
for all bases 2 ≤ r < 8. Thus there exist at least one neutral digit s 
for all composite number bases r > 6. (See Figure 5.2).

This section has demonstrated that all squarefree compos-
ite bases r must possess at least one semidivisor, and that all 
composite numbers r > 6 possess at least one semitotative. This 
aligns with the assertion in the previous section that all compos-
ite numbers except 4 possess neutral digits.  The number base 6 
is unique in that it possesses a semidivisor (the senary digit 4) 
but no semitotative. Bases which are powers of a single prime 
divisor (except base 4) possess semitotatives but no semidivi-
sors. Base 8 is the smallest instance of a number base possessing 
a semitotative—the octal digit 6. (See Figure 5.3).

6. Construction and Quantification  
of Neutral Digits

This section will illustrate the construction of the set of all 
semidivisors and that of all semitotatives of base r.

Construction of the Set of Semidivisors

Here is a recapitulation of a few facts about a semidivisor 
sd and the number base r. The semidivisor sd  is a digit, thus  
0 < sd < r. Lemma 4.1.3 shows that sd does not divide r evenly, 
nor is sd coprime to r, thus it is a kind of neutral digit. (The 
concept of a neutral digit was established in Section 2 and can 
be counted using Formula 3.1 of Theorem 3.1.) The standard 
form of prime decomposition of any positive integer r ≥ 2 is 
given by Formula 1.1. Let p be a distinct prime divisor of r. 
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1 a2 3

Figure 5.1. Base 4 cannot have semitotatives because the minimum tota-
tive q1 (indicated by 3) is larger than both the minimum divisor p1 
(2) and its complement p′1 (2).

1 a2 3 4 5

Figure 5.2. Base 6 cannot have semitotatives because q1 (5) is larger 
than both the minimum divisor p1 (2) and its complement p′1 (3).

1 a2 3 4 5 6 7

Figure 5.3. Base 8 possesses the semitotative h1= 6 because q1 (3) is 
less than the minimum divisor’s complement p′1 (4).

1 a2 3 4 5 6 7 8 9

Figure 5.4. Base 10 possesses the semitotative h1= 6 because q1 (3) is 
less than the minimum divisor’s complement p′1 (5).

1 a2 3 4 5 6 7 8 9 a b

Figure 5.5. Base 12 possesses the semitotative h1= 10 because q1 (5) is 
less than the minimum divisor’s complement p′1 (6).

1 a2 3 4 5 6 7 8 9 a b c d e f

Figure 5.6. Base 16 has four semitotatives. The totatives 3, 5, and 7 
are less than p′1 =8. The totative 3 generates the semitotatives 6 
and 12 by multiplication with the divisors 2 and 22 respectively. The 
totatives 5 and 7 produce the semitotatives 10 and 14 respectively 
with the divisor 2.
prime q1 = pk + 1 = 7 to produce a smallest semidivisor s1 = 14. 
Thus at i = 3 we have the condition pi < q1

 < p1′, presented 
in Lemma 5.2.2. As the value of i increases, the difference  
δs = p1′ – pk widens, since only a few of the smallest primes will 
produce a value of rk large enough to admit a pk + 1 and there-
fore a minimum semitotative s1. Thus any primorial rk > 6 will 
have at least one semitotative.

Cases where the multiplicity αi of any of the distinct prime 
divisors pi of rk are increased, e.g., {22 · 3 · 5} = 60 versus r3 = 
{2 · 3 · 5} = 30 only increase the difference p1′ – p1. Cases where 
some pi, where p1 < pi < pk is left out, e.g., {2 · 5} = 10 versus  
r3 = {2 · 3 · 5} = 30, admit q1 < p1′. 

The case where r is odd, meaning the smallest prime to-
tative q1 = 2 yields the condition described in Lemma 5.2.1. 
Leaving ensuing small primes qi out of the prime decom-
poition of r only furnishes more small totatives that produce 
semitotatives with the minimum prime divisor p1. Therefore 
all composite numbers greater than 6 will possess at least one 
semitotative. 

Corollary 5.3. Bases 4 and 6 are the only composite values of 
r that do not possess semitotatives. Semitotatives do not exist 
for bases 2 ≤ r < 8.



Let the integer k be the number of distinct prime divisors p of 
r. Let the integer 0 < i ≤ k. Let αi be the exponent of the prime 
divisor pi. Then the number base r has the standard form of 
prime decomposition

	 r = p1
α1 p2

α2… pk
αk

	 (α1 > 0, α2 > 0, …, αk > 0, p1 < p2 < … < pk).

Regular numbers are described by Definition 4.1.3 and For-
mula 4.2. Let δi be the exponent of the prime divisor pi. Thus 
the regular number g has the prime decomposition

	 g =  
k

Π
i = 1

 pi
δk = p1

δ1 p2
δ2… pk

δk

	 (p1 < p2 < … < pk).

The semidivisor is a regular neutral digit sd that has at least one 
prime divisor pi with multiplicity δi > αi that is the multiplicity 
of the corresponding pi in r. Every prime divisor p of sd is also 
found in the prime decomposition of r such that p | sd  p | r.

We can generate the set Sd of semidivisors of r through the 
following technique. Firstly, consider a matrix of products of 
the powers of each distinct prime divisor pi of r. The integer k 
is the number of distinct prime divisors p of r. Such a matrix is 
k-dimensional, requiring an axis for each distinct prime divi-
sor of r. For r = 10, two axes are required, since the distinct 
prime divisors of 10 are {2, 5}. For r = 60, the matrix is three 
dimensional, since the distinct prime divisors of 60 are {2, 3, 
5}. Presuming there exist two distinct prime divisors a and 
b of r, the matrix of regular numbers of such an r can be ar-
ranged as shown by Figure 6.1. Suppose r has three distinct 
prime divisors a, b, and c. Then the matrix of regular numbers 
will be three dimensional, and will resemble the series of two 
dimensional matrices shown in Figure 6.2. Figure 3 illustrates 
the regular digits of base r = 10.

The regular digit is a regular number g ≤ r, thus using the 
example of r = 10, the matrix of regular numbers can be trun-
cated such that all products in the table are less than or equal 
to r. Since we are dealing strictly with digits, the digit zero can 
substitute for r. This is because digit zero signifies congruence 
with r. (The special case where digit zero represents actual zero 
is ignored.) Figure 6.4 is a table of regular digits for r = 10.

The divisor of r is a special case of a regular digit, described 
by Formula 1.3, recapitulated here. Let the integer 1 ≤ δi ≤ αi 
be the multiplicity of each of the base r’s distinct prime divi-
sors pi in the divisor d. Each divisor d thus has a standard form 
prime decomposition 

	 d = p1
δ1 p2

δ2… pr
δr

	 (p1 < p2 < … < pk)

Thus, the table of divisors is contained in the table of regular 
digits, since no exponent δi > αi. All products of prime divisors 
having 1 ≤ δi ≤ αi thereby occupy an orthogonal k-dimensional 
region of the matrix of regular digits. For a base r that has two 
distinct prime factors, the divisors occupy a rectangle; if r is 
square, the divisors occupy a square. A square r that has three 
distinct prime factors has a cubic matrix of divisors. Figure 6.5 

a0 a1 a2 a3 a4 …

b0 1 a a2 a3 a4 …

b1 b ab a2b a3b a4b …

b2 b2 ab2 a2b2 a3b2 a4b2 …

b3 b3 ab3 a2b3 a3b3 a4b3 …

b4 b4 ab4 a2b4 a3b4 a4b4 …

• • • • • •

Figure 6.1. An infinite two dimensional matrix of regular numbers in 
base r with two distinct prime divisors a and b.

(× c0) a0 a1 a2 …

b0 1 a a2 …

b1 b ab a2b …

b2 b2 ab2 a2b2 …

• • • •

(× c1) a0 a1 a2 …

b0 c ac a2c …

b1 bc abc a2bc …

b2 b2c ab2c a2b2c …

• • • •

(× c2) a0 a1 a2 …

b0  c2 ac2 a2c2 …

b1 bc2 abc2 a2bc2 …

b2 b2c2 ab2c2 a2b2c2 …

• • • •

Figure 6.2. A three dimensional matrix of regular numbers in base r with 
three distinct prime divisors a, b, and c.

20 21 22 23 24 25 26 …

50 1 2 4 8 16 32 64 …

51 5 10 20 40 80 160 320 …

52 25 50 100 200 400 800 1600 …

53 125 250 500 1000 2000 4000 8000 …

• • • • • • • •     

Figure 6.3. A matrix of decimal regular numbers.

20 21 22 23

50 1 2 4 8

51 5 0

Figure 6.4. A matrix of decimal regular digits. A regular digit is a regular 
number g ≤ r. The number “10” is replaced by digit zero, which signifies 
congruence with base r.
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on another axis. Let g1 be the minimum regular number and c1 
be the minimum coprime number in base r. Let the integers  
i > 0 and j > 0. Then one axis can have the infinite series g1, g2, 
…, gi, … while the other has the infinite series c1, c2, …, cj, …. 
Figure 6.7 illustrates such a matrix of semi-coprime numbers.

A matrix of semitotatives is simply a semi-coprime ma-
trix truncated at values that exceed r. Let p1 be the minimum 
prime divisor of r, and let q1 be the smallest prime totative of 
r. There must be a complement p1′ to the minimum prime di-
visor p1 such that r = p1· p1′. Let the integer t′ be the “totative 
complement to p1”, the largest totative less than p1′. Let the in-
teger g′ be the largest regular digit less than r/t1. The matrix 
of semitotatives will include all regular numbers p1 ≤ g ≤ g′ on 
one axis and all totatives t1 ≤ t ≤ t′ on the other axis. Figure 
6.9 shows some semitotative matrices in the form of semitota-
tive maps. Appendix Table A4 shows semitotative maps for  
8 ≤ r ≤ 60. 

A Test for Semidivisors and Semitotatives

Recall the test for a neutral digit in formula 2.11:

	 1 < gcd(n, r) < n.

We can write a recursive routine that would determine wheth-
er an integer n > 0 is a regular number g  r or a semi-coprime 
number h using the digit n, the base r, and the gcd function. 
Let the integer i ≥ 1.

Step 1: let n1 = n/gcd(n, r) if 1 < gcd(n, r) < n. 

Step 2: Check ni. If any ni = 1, then n is a regular number g 
 r. If g < r, then g is a semidivisor sd.

Step 3: Check gcd(ni, r). If i ≥ 1  gcd(ni, r) = 1, then the 
routine has found a semi-coprime number h. If h < r, then h is 
a semitotative st.

Step 4: Iterate until conditions in Step 2 or 3 materialize. 
Let n(i + 1) = ni/gcd(ni, r) if 1 < gcd(ni, r) < n. Return to Step 2.

Counting Semidivisors

Suppose there exists a counting function ρ(r) that enu-
merates the regular digits of r. Let the integer l > 1 and let 
Floor(x) be a function which takes the integer part of a real 
number x. The greatest integral power δi,j of a prime divisor pi 
can be determined using the following:	

(6.1) δi,l = Floor( Log r
Log pi

).

There are thus δi,l + 1 elements along each axis, defining the 
maximum range of the matrix for pi. This paper will not define 
a regular digit counting function ρ(r). For the current purpose 
the quantity of regular digits ρ(r) will be tallied manually.

We can derive a counting function νd(r) for the number of 
semidivisors sd of r using the following formula:

(6.2)	 νd(r) = ρ(r) – σ0(r).
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20 21 22 23

50 1 2 4 8

51 5 0

Figure 6.5. A matrix of decimal regular digits, highlighting the region 
containing the divisors of r. Digits lying outside this region are semidivi-
sors of base r. Thus the set of decimal semidivisors is {4, 8}.

10 2δ

5δ 1 2 4 8
5 0

12 2δ

3δ

1 2 4 8
3 6 0
9

48 2δ

3δ

1 2 4 8 g w
3 6 c o 0

9 i A
r

54 2δ

3δ

1 2 4 8 g w
3 6 c o M
9 i A
r 0

Figure 6.6. Maps of regular digits in bases 10, 12, 48, and 54. Divisors 
and semidivisors appear on red and orange backgrounds, respectively.

shows the decimal divisors in boldface, with a thick line de-
noting the region of divisors. The digits outside of the region 
of divisors are the decimal semidivisors. 

Figure 6.6 includes matrices of regular digits for some 
values of r. The cells of these matrices are color coded such 
that divisors are printed in white on red backgrounds, and 
semidivisors are printed in black on orange backgrounds. 
The decimal value of each digit is shown. We will call digits  
n ≥ 10 “transdecimal” digits, as they find application in bases 
r > 10. The transdecimal digits of number bases may employ 
a set of arbitrary numerals. In Figure 6.6, the numerals are 
simply “stacked” decimal values, the tens place over the ones 
place. Such matrices may be called “regular digit maps” for 
base r. Appendix Table A2 furnishes regular digit maps for 6 
< r < 66. Indeed, regular digit maps can become involved: Ap-
pendix Table A3 shows a regular digit map for base 2520.

Construction of the Set of Semitotatives

A semi-coprime number h is a composite number having 
at least one prime divisor p  r and at least one prime divisor 
q  r. The semitotative st is simply a semi-coprime number  
h < r. Thus a semitotative is a composite neutral digit that has 
at least one prime divisor p  r and at least one prime divisor 
q  r. 

At least two methods exist for construction of the set of 
semitotatives St of a number base r. We can construct a matrix 
of products of totatives t and regular digits g which will pro-
duce semi-coprime numbers of base r. Multiplication of the 
prime divisors pi and the prime totatives qi of r is also sufficient 
if multiple instances of pi and qi are allowed. We will focus on 
the first concept. 

A two dimensional matrix of semi-coprime numbers h in 
base r can be computed by arranging the set G of regular num-
bers g in base r along one axis and the set C of numbers c  r 



g1 g2 g3 g4 g5 …

c1 c1 g1 c1 g2 c1 g3 c1 g4 c1 g5 …

c2 c2 g1 c2 g2 c2 g3 c2 g4 c2 g5 …

c3 c3 g1 c3 g2 c3 g3 c3 g4 c3 g5 …

c4 c4 g1 c4 g2 c4 g3 c4 g4 c4 g5 …

c5 c5 g1 c5 g2 c5 g3 c5 g4 c5 g5 …

• • • • • •

Figure 6.7. An infinite two dimensional matrix of semi-coprime prod-
ucts h in base r having as multiplicands the regular number gi and the 
coprime number cj.

2 4 5 8 10 …

3 6 12 15 24 30 …

7 14 28 35 56 70 …

9 18 36 45 72 90 …

11 22 44 55 88 110 …

13 26 52 65 104 130 …

• • • • • •

Figure 6.8. A matrix of decimal semi-coprime numbers.

10 2
3 6

16 2 4
3 6 c
5 a
7 e

58 2 4 8 g
3 6 c o M
5 a k E
7 e s U
9 i A
b m I
d q Q
f i
h y
j C
l G
n K
p O
r S

60 2 3 4 5 6 8

7 e l s z G U
b m x I T
d q D Q
h y P
j C V
n K
t W

Figure 6.9. Semitotative maps for bases 10, 16, 58, and 60.

Counting Semitotatives

A counting function akin to that for regular digits can be 
devised, using the method presented above for constructing 
all semitotatives of r. That method is reliant on knowledge of 
regular numbers. Theorem 4.1 proves that there are only two 
kinds of neutral digit. Thus, using the neutral digit function 
established in formula 3.1,

	 ν(r) = r – [φ(r) + σ0(r) – 1],

we can compute the number of semitotatives using the fol-
lowing formula:

(6.3)	 νt(r) = ν(r) – νd(r).

This section has demonstrated some methods for con-
structing the set Sd of semidivisors and St of semitota-
tives of r. A routine that tests whether an integer n > 0 
is a regular number g  r or a semi-coprime number h if  
1 < gcd(n, r) < n. Functions were defined that quantify semi-
divisors and semitotatives based on the neutral digit function 
defined by formula 3.1. 

7. Conclusion.
This work proves the existence of neutral digits in com-

posite bases except base 4. Section 2 demonstrates that for 
some composite numbers r ≥ 2, there exist digits 0 < n ≤ r 
that are neither divisors of nor coprime to r. In Section 3 we 
define a neutral digit counting function. We prove in Section 
4 there are two and only two types of neutral digits, both com-
posite. One kind of neutral digit is the semitotative st whose 
prime factors include at least one prime divisor p and at least 
one prime totative q of r. The other kind is a semidivisor sd, a 
regular digit g  r. Section 5 proves semidivisors exist for all 
squarefree composite bases r except for r = 4. We prove semi-
totatives exist for all composite bases r except for r = 4 and r 
= 6, and we explore the reasons why bases 4 and 6 are excep-
tions. Jointly, the proofs in Section 5 prove at least 1 neutral 
digit s exists for all composite number bases r > 6. Section 6 
illustrates methods of construction of the sets of semidivisors 
and ssemitotatives in base r. Counting functions for each kind 
of neutral digit are created based on the neutral digit func-
tion. The Appendix Table 5 summarizes the kinds of digits 
for bases 2 ≤ r ≤ 60, while Table 6 maps out each digit in the 
same range of bases.

Work can be done to produce algorithms that analyze the 
relationships of digits n to bases r. Further work on an algo-
rithm that produces digit maps and spectra for bases r can be 
pursued. A solid counting function for semidivisors and semi-
totatives would prove handy. Initially this work may consist 
of simply counting digits of a certain kind in a digit map or 
spectrum. These algorithms are currently under development 
in Mathematica.

This work serves as one part of a foundation for future 
work regarding number bases. A second paper will cover in-
direct relationships between digits of base r and the numbers 
r – 1 and r + 1. It will also cover inherited divisibility rules.

Michael Thomas De Vlieger,
St. Louis, mo, 23 November 2011.
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4 2δ

1 2 0

6 2δ

3δ 1 2 4
3 0

8 2δ

1 2 4 0

9 3δ

1 3 0

10 2δ

5δ 1 2 4 8
5 0

12 2δ

3δ

1 2 4 8
3 6 0
9

14 2δ

7δ 1 2 4 8
7 0

15 3δ

5δ 1 3 9
5 0

16 2δ

1 2 4 8 0

18 2δ

3δ

1 2 4 8 g
3 6 c
9 0

20 2δ

5δ 1 2 4 8 g
5 a 0

21 3δ

7δ 1 3 9
7 0

22 2δ

11δ 1 2 4 8 g
b 0

24 2δ

3δ

1 2 4 8 g
3 6 c 0

9 i

25 5δ

1 5 0

26 2δ

13δ 1 2 4 8 g
d 0

27 3δ

1 3 9 0

28 2δ

7δ 1 2 4 8 g
7 e 0

30

50 2δ

3δ

1 2 4 8 g
3 6 c o

9 i
r

51 2δ

3δ 5 a k
f 0

52 2δ

3δ p

32 2δ

1 2 4 8 g 0

33 3δ

11δ 1 3 9 r
b 0

34 2δ

13δ 1 2 4 8 g w
h 0

35 5δ

7δ 1 5 p
7 0

36 2δ

3δ

1 2 4 8 g w
3 6 c o
9 i 0

r

38 2δ

19δ 1 2 4 8 g w
j 0

39 3δ

13δ 1 3 9 r
d 0

40 2δ

5δ

1 2 4 8 g w
5 a k 0

p

42

70 2δ

3δ

1 2 4 8 g w
3 6 c o

9 i A
r

71 2δ

3δ 7 e s
l 0

44 2δ

11δ 1 2 4 8 g w
b m 0

45 3δ

5δ

1 3 9 r
5 f 0

p

46 2δ

23δ 1 2 4 8 g w
n 0

48 2δ

3δ

1 2 4 8 g w
3 6 c o 0

9 i A
r

49 7δ

1 7 0

50 2δ

5δ

1 2 4 8 g w
5 a k E
p 0

51 3δ

17δ 1 3 9 r
h 0

52 2δ

13δ 1 2 4 8 g w
d q 0

54 2δ

3δ

1 2 4 8 g w
3 6 c o M
9 i A
r 0

55 5δ

11δ 1 5 p
b 0

56 2δ

7δ

1 2 4 8 g w
7 e s 0

N

57 3δ

19δ 1 3 9 r
j 0

58 2δ

29δ 1 2 4 8 g w
t 0
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50 2δ

3δ

1 2 4 8 g w
3 6 c o M

9 i A
r S

51 2δ

3δ

5 a k E
f u 0

J

52 2δ

3δ p O

62 2δ

31δ 1 2 4 8 g w
v 0

63 3δ

7δ

1 3 9 r
7 l 0

N

64 2δ

1 2 4 8 g w 0

65 5δ

13δ 1 5 p
d 0

66

110 2δ

3δ

1 2 4 8 g w 64
3 6 c o M

9 i A
r S

111 2δ

3δ b m I
x 0

Figure A2: Regular Digit Maps for 2 ≤ r ≤ 66
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2520 70:

50 2δ

3δ

1 2 4 8 16 32 64 128 256 512 1024 2048
3 6 12 24 48 96 192 384 768 1536
9 18 36 72 144 288 576 1152 2304

27 54 108 216 432 864 1728
81 162 324 648 1296

243 486 972 1944
729 1458

2187

51 2δ

3δ

5 10 20 40 80 160 320 640 1280
15 30 60 120 240 480 960 1920
45 90 180 360 720 1440

135 270 540 1080 2160
405 810 1620

1215 2430

52 2δ

3δ

25 50 100 200 400 800 1600
75 150 300 600 1200 2400

225 450 900 1800
675 1350

53 2δ

3δ

125 250 500 1000 2000
375 750 1500

1125 2250

54 2δ

3δ 625 1250 2500
1875 750

72:

50 2δ

3δ

49 98 196 392 784 1568
147 294 588 1176 2352
441 882 1764

1323

51 2δ

3δ

245 490 980 1960
735 1470

2205

52 2δ

3δ 1225 2450

73:

50 2δ

3δ 343 686 1372
1029 2058

51 2δ

3δ 1715

74:

50 2δ

3δ 2401

71:

50 2δ

3δ

7 14 28 56 112 224 448 896 1792
21 42 84 168 336 672 1344
63 126 252 504 1008 2016

189 378 756 1512
567 1134 2268

1701

51 2δ

3δ

35 70 140 280 560 1120 2240
105 210 420 840 1680
315 630 1260 2520
945 1890

52 2δ

3δ

175 350 700 1400
525 1050 2100

1575

53 2δ

3δ 875 1750

Figure A3: Regular Digit Maps for r = 2520
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8 2
3 6

9 3
2 6

10 2
3 6

12 2
5 a

14 2 4
3 6 c
5 a

15 3 5
2 6 a
4 c

16 2 4
3 6 c
5 a
7 e

18 2 3
5 a f
7 e

20 2 4 5
3 6 c f
7 e
9 i

21 3 7
2 6 e
4 c
5 f
8 i

22 2 4
3 6 c
5 a k

7 e
9 i

24 2 3 4
5 a f k
7 e l

b m

25 5
2 a
3 f
4 k

26 2 4 8
3 6 c o
5 a k

7 e
9 i
b m

27 3 9
2 6 i
4 a
5 f
7 l
8 o

28 2 4 7 8
3 6 c l o
5 a k

9 i
b m
d q

30 2 3 4
7 e l s
b m
d q

32 2 4 8
3 6 c o
5 a k
7 e s

9 i
b m
d q
f u

33 3 9 b

2 6 i m
4 c
5 f
7 l
8 o
a u

34 2 4 8

3 6 c o
5 a k
7 e s

9 i
b m
d q
f u

35 5 7

2 a e
3 f l
4 k s

6 u

36 2 3 4 6
5 a f k u
7 e l s

b m x

d q
h y

38 2 4 8

3 6 c o
5 a k
7 e s
9 i A

b m
d q
f u
h y

39 3 9 d

2 6 i m
4 c A

5 f
7 l
8 o
a u
b x

40 2 4 5 8 a

3 6 c m o u
7 e s z

9 i A

b m
d q
h y
j C

42 2 3 4 6 7 8
5 a f k u z E
b m s
d q D

h y
j C

44 2 4 8 b

3 a c o x
5 m k E

7 q s
9 y A

d C
h y
j C
l G

45 3 5 9 f

2 6 a i u
4 c k A

7 l z
8 o E

b x
d D
e G

46 2 4 8

3 6 c o
5 a k E

7 e s
9 i A
b m I

d q
f u
h y
j C
l G

48 2 3 4 6 8 9

5 a f k u E J
7 e l s G

b m x I

d q D

h y
j C
n K

49 7
2 e
3 l
4 s
5 z
6 G

50 2 4 5 8 a g

3 6 c f o u M
7 e s z
9 i A J

b m I

d q
h y
j A
l G
n K

51 3 9 h

2 6 i y
4 c A
5 f J

7 l
8 o
a u
b x
d D
g M

52 2 4 8 d g

3 6 c o D M
5 a k E

7 e s
9 i A
b m I

f u
h y
j C
l G
n K
p O

54 2 3 4 6 8 9

5 a f k u E J
7 e l s G

b m x I
d q D Q

h y P

j C
n K
p O

55 5 b p

2 a m O
3 f x
4 k I

6 u
7 z
8 E
9 J

56 2 4 7 8 e g

3 6 c l o G M
5 a k z E

9 i A
b m I
d q Q
h y P

j C
n K
p O
r S

Figure A4: Semitotative Maps for 2 ≤ r ≤ 60
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Table A5: Digit Spectra for 2 ≤ r ≤ 60
r PF Sparkline G D Sd St T N
2 2 2 2 · · 1 ·
3 3 2 2 · · 2 ·
4 22 3 3 · · 2 ·
5 5 2 2 · · 4 ·
6 2 · 3 5 4 1 · 2 1
7 7 2 2 · · 6 ·
8 23 4 4 · 1 4 1
9 32 3 3 · 1 6 1

10 2 · 5 6 4 2 1 4 3
11 11 2 2 · · 10 ·
12 22 · 3 8 6 2 1 4 3
13 11 2 2 · · 12 ·
14 2 · 7 6 4 2 3 6 5
15 3 · 5 5 4 1 3 8 4
16 24 5 5 · 4 8 4
17 17 2 2 · · 16 ·
18 2 · 32 10 6 4 3 6 7
19 19 2 2 · · 18 ·
20 22 · 5 8 6 2 5 8 7
21 3 · 7 5 4 1 5 12 6
22 2 · 11 7 4 3 6 10 8
23 23 2 2 · · 22 ·
24 23 · 3 11 8 3 6 8 9
25 52 3 3 · 3 20 3
26 2 · 13 7 4 3 8 12 11
27 33 4 4 · 6 18 6
28 22 · 7 8 6 2 9 12 11
29 29 2 2 · · 28 ·
30 2 · 3 · 5 18 8 10 5 8 15
31 31 2 2 · · 30 ·
32 25 6 6 · 11 16 11
33 3 · 11 6 4 2 8 20 10
34 2 · 17 8 4 4 11 16 15
35 5 · 7 5 4 1 7 24 8
36 22 · 32 14 9 5 11 12 16
37 37 2 2 · · 36 ·
38 2 · 19 8 4 4 13 18 17
39 3 · 13 6 4 2 10 24 12
40 23 · 5 11 8 3 14 16 17
41 41 2 2 · · 40 ·
42 2 · 3 · 7 19 8 11 12 12 23
43 43 2 2 · · 42 ·
44 22 · 11 9 6 3 15 20 18
45 32 · 5 8 6 2 14 24 16
46 2 · 23 8 4 4 17 22 21
47 47 2 2 · · 46 ·
48 24 · 3 15 10 5 18 16 23
49 72 3 3 · 5 42 5
50 2 · 52 12 6 6 19 20 25
51 3 · 17 6 4 2 14 32 15
52 22 · 13 9 6 3 20 24 23
53 53 2 2 · · 52 ·
54 2 · 32 16 8 8 23 18 31
55 5 · 11 5 4 1 11 40 12
56 23 · 7 11 8 3 22 24 25
57 3 · 19 6 4 2 16 36 18
58 2 · 29 8 4 4 23 28 27
59 59 2 2 · · 58 ·
60 22 · 3 · 5 26 12 14 19 16 35

57 3 9 j r

2 6 i C S
4 c A
5 f J

7 l
8 o
a u
b x
d D
e G
g M
h P

58 2 4 8 g

3 6 c o M
5 a k E
7 e s U

9 i A
b m I
d q Q

f i
h y
j C
l G
n K
p O
r S

60 2 3 4 5 6 8

7 e l s z G U
b m x I T

d q D Q

h y P
j C V

n K
t W

Figure A4 continued.
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r n
2 0 1

3 0 1 2

4 0 1 2 3

5 0 1 2 3 4

6 0 1 2 3 4 5

7 0 1 2 3 4 5 6

8 0 1 2 3 4 5 6 7

9 0 1 2 3 4 5 6 7 8

10 0 1 2 3 4 5 6 7 8 9

11 0 1 2 3 4 5 6 7 8 9 a

12 0 1 2 3 4 5 6 7 8 9 a b

13 0 1 2 3 4 5 6 7 8 9 a b c

14 0 1 2 3 4 5 6 7 8 9 a b c d

15 0 1 2 3 4 5 6 7 8 9 a b c d e

16 0 1 2 3 4 5 6 7 8 9 a b c d e f

17 0 1 2 3 4 5 6 7 8 9 a b c d e f g

18 0 1 2 3 4 5 6 7 8 9 a b c d e f g h

19 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i

20 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j

21 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k

22 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l

23 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m

24 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n

25 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o

26 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p

27 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q

28 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r

29 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s

30 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t

31 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u

32 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v

33 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w

34 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x

35 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y

36 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z

37 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A

38 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B

39 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C

40 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D

41 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E

42 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F

43 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G

44 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H

45 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I

46 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J

47 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K

48 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L

49 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M

50 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N

51 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O

52 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P

53 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P Q

54 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P Q R

55 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P Q R S

56 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P Q R S T

57 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P Q R S T U

58 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P Q R S T U V

59 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P Q R S T U V W

60 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P Q R S T U V W X

Legend
1 Unit, (1 | r)  1  r
d Divisor, primes dp | r, and composites dc | r, the set of divisors of r = Dr

sd Semidivisor, a composite sd | kr, where its divisors dn  Dr

st Semitotative, a composite st | kr, where at least one of its divisors dn  Dr

t Totative, primes tp  r, and composites tc  r, the set of totatives of r = Tr

1

tP

tC

st sd

dC

dP

Table A6: Digit Maps for 2 ≤ r ≤ 60


