A301892(n) = A010846(A002182(n))
Michael De Vlieger, St. Louis, Missouri, 2018 0328 1030, revised 2018 0331 1415.
(This document is originally a text “data brief”. Data briefs intend to express observations and conjectures about sequences I’ve written. The data is the most important part of the document and can be very long. In this edition of the brief, the data is abbreviated, with links to the full analysis. Data briefs and the material in the math section of this site is intentionally starkly minimally designed so as to focus on the logic and data rather than formatting.)
We define an “n-regular” number as 1 ≤ m ≤ n such that m | ne with integer e ≥ 0. A number that is not regular is said to be “non-regular”.
The divisor d is a special case of regular number m such that d | ne with e = 0 or e = 1.
Regular numbers m can exceed n; we are concerned only with regulars m ≤ n herein.
Regular numbers, apart from 1, occupy the cototient of n. The union of the regulars and the cototient leaves us with the “semitotative” for composite n > 6 listed in row n of A272619.
We are not concerned with “semidivisors” m such that m | ne with e > 1, listed in row n of A272618, but with the regular and divisor counting functions A010846(n) and A000005(n),
respectively.
Table 1: Comparison of A010846(A002182(n)) and A002183(n).
Table 2: A301893(i) = Numbers k that set records for the ratio rcf(k)/τ(k).
Table 3: The intersection of A002182 and A244052.
(Observations and conjectures follow each table.)
Code.
Questions:
(1) A002182(n)
(2)
Index of A002182(n) in A244052. If A002182(n) is not in A244052, left blank.
(3) Index of A002182(n) in A301893 (see Table 2). (A301893 computed through 36 × 106).
(4) A301893(n) = numbers k that set records for the ratio rcf(k)/τ(k).
(5) A301892(n) = A010846(A002182(n)).
(6) A108602(n) = A001221(A002182(n)).
(7) A002183(n)/A301892(n)
(8) “Multiplicity Family” of A002182(n): MN( m/A002110(A108602(m)) ). (See Table 4).
MN = Multiplicity Notation = A054841(a(n)) here represents the reverse of A054841 in OEIS; i.e., “little-endian” rather than big-endian, e.g., A054841(84) = 1013 but here it is 2101. We use A054841 or “multiplicity notation” here since the terms of a(n) are products of relatively small primes and the notation succinctly expresses their prime decomposition. This is notation Achim Flammenkamp employed in his studies of highly composite numbers.
n | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
--- | -------- | ----- | ----- | ----- | ----- | ---------- | ---- | ------- |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
2 | 2 | 2 | 2 | 2 | 1 | 1 | 0 | |
3 | 4 | 3 | 3 | 3 | 1 | 1 | 1 | |
4 | 6 | 4 | 2 | 4 | 5 | 0.8 | 2 | 0 |
5 | 12 | 6 | 6 | 8 | 0.75 | 2 | 1 | |
6 | 24 | 8 | 8 | 11 | 0.727273 | 2 | 2 | |
7 | 36 | 9 | 14 | 0.642857 | 2 | 11 | ||
8 | 48 | 10 | 15 | 0.666667 | 2 | 3 | ||
9 | 60 | 11 | 12 | 26 | 0.461538 | 3 | 1 | |
10 | 120 | 14 | 16 | 36 | 0.444444 | 3 | 2 | |
11 | 180 | 16 | 18 | 44 | 0.409091 | 3 | 11 | |
12 | 240 | 20 | 49 | 0.408163 | 3 | 3 | ||
13 | 360 | 24 | 58 | 0.413793 | 3 | 21 | ||
14 | 720 | 30 | 76 | 0.394737 | 3 | 31 | ||
15 | 840 | 22 | 32 | 131 | 0.244275 | 4 | 2 | |
16 | 1260 | 24 | 36 | 156 | 0.230769 | 4 | 11 | |
17 | 1680 | 26 | 40 | 174 | 0.229885 | 4 | 3 | |
18 | 2520 | 48 | 206 | 0.23301 | 4 | 21 | ||
19 | 5040 | 60 | 266 | 0.225564 | 4 | 31 | ||
20 | 7560 | 64 | 308 | 0.207792 | 4 | 22 | ||
21 | 10080 | 72 | 339 | 0.212389 | 4 | 41 | ||
22 | 15120 | 80 | 388 | 0.206186 | 4 | 32 | ||
23 | 20160 | 84 | 428 | 0.196262 | 4 | 51 | ||
24 | 25200 | 90 | 460 | 0.195652 | 4 | 311 | ||
25 | 27720 | 47 | 96 | 766 | 0.125326 | 5 | 21 | |
26 | 45360 | 100 | 550 | 0.181818 | 4 | 33 | ||
27 | 50400 | 108 | 568 | 0.190141 | 4 | 411 | ||
28 | 55440 | 120 | 979 | 0.122574 | 5 | 31 | ||
29 | 83160 | 128 | 1124 | 0.113879 | 5 | 22 | ||
30 | 110880 | 144 | 1238 | 0.116317 | 5 | 41 | ||
31 | 166320 | 160 | 1411 | 0.113395 | 5 | 32 | ||
32 | 221760 | 168 | 1548 | 0.108527 | 5 | 51 | ||
33 | 277200 | 180 | 1659 | 0.108499 | 5 | 311 | ||
34 | 332640 | 192 | 1754 | 0.109464 | 5 | 42 | ||
35 | 498960 | 200 | 1983 | 0.100857 | 5 | 33 | ||
36 | 554400 | 216 | 2048 | 0.105469 | 5 | 411 | ||
37 | 665280 | 224 | 2160 | 0.103704 | 5 | 52 | ||
38 | 720720 | 240 | 3689 | 0.065058 | 6 | 31 | ||
39 | 1081080 | 256 | 4211 | 0.060793 | 6 | 22 | ||
40 | 1441440 | 288 | 4617 | 0.062378 | 6 | 41 | ||
41 | 2162160 | 320 | 5245 | 0.061011 | 6 | 32 | ||
42 | 2882880 | 336 | 5731 | 0.058629 | 6 | 51 | ||
43 | 3603600 | 360 | 6135 | 0.05868 | 6 | 311 | ||
44 | 4324320 | 384 | 6482 | 0.059241 | 6 | 42 | ||
45 | 6486480 | 400 | 7308 | 0.054735 | 6 | 33 | ||
46 | 7207200 | 432 | 7539 | 0.057302 | 6 | 411 | ||
47 | 8648640 | 448 | 7949 | 0.056359 | 6 | 52 | ||
48 | 10810800 | 480 | 8477 | 0.056624 | 6 | 321 | ||
49 | 14414400 | 504 | 9198 | 0.054795 | 6 | 511 | ||
50 | 17297280 | 512 | 9681 | 0.052887 | 6 | 62 | ||
51 | 21621600 | 576 | 10306 | 0.05589 | 6 | 421 | ||
52 | 32432400 | 600 | 11515 | 0.052106 | 6 | 331 | ||
53 | 36756720 | - | 640 | 19994 | 0.03201 | 7 | 32 | |
54 | 43243200 | - | 672 | 12448 | 0.053985 | 6 | 521 | |
55 | 61261200 | - | 720 | 23259 | 0.030956 | 7 | 311 | |
56 | 73513440 | - | 768 | 24532 | 0.031306 | 7 | 42 | |
57 | 110270160 | - | 800 | 27570 | 0.029017 | 7 | 33 | |
58 | 122522400 | - | 864 | 28408 | 0.030414 | 7 | 411 | |
59 | 147026880 | - | 896 | 29917 | 0.02995 | 7 | 52 | |
60 | 183783600 | - | 960 | 31849 | 0.030142 | 7 | 321 | |
61 | 245044800 | - | 1008 | 34500 | 0.029217 | 7 | 511 | |
62 | 294053760 | - | 1024 | 36278 | 0.028227 | 7 | 62 | |
63 | 367567200 | - | 1152 | 38557 | 0.029878 | 7 | 421 | |
64 | 551350800 | - | 1200 | 43016 | 0.027897 | 7 | 331 | |
65 | 698377680 | - | 1280 | 77028 | 0.016617 | 8 | 32 | |
66 | 735134400 | - | 1344 | 46436 | 0.028943 | 7 | 521 | |
67 | 1102701600 | - | 1440 | 51652 | 0.027879 | 7 | 431 | |
68 | 1396755360 | - | 1536 | 93907 | 0.016357 | 8 | 42 | |
69 | 2095133040 | - | 1600 | 105210 | 0.015208 | 8 | 33 | |
70 | 2205403200 | - | 1680 | 61730 | 0.027215 | 7 | 531 | |
71 | 2327925600 | - | 1728 | 108330 | 0.015951 | 8 | 411 | |
72 | 2793510720 | - | 1792 | 113928 | 0.015729 | 8 | 52 | |
73 | 3491888400 | - | 1920 | 121118 | 0.015852 | 8 | 321 | |
74 | 4655851200 | - | 2016 | 130970 | 0.015393 | 8 | 511 | |
75 | 5587021440 | - | 2048 | 137566 | 0.014887 | 8 | 62 | |
76 | 6983776800 | - | 2304 | 146038 | 0.015777 | 8 | 421 | |
77 | 10475665200 | - | 2400 | 162599 | 0.01476 | 8 | 331 | |
78 | 13967553600 | - | 2688 | 175323 | 0.015332 | 8 | 521 | |
79 | 20951330400 | - | 2880 | 194715 | 0.014791 | 8 | 431 | |
80 | 27935107200 | - | 3072 | 209588 | 0.014657 | 8 | 621 | |
81 | 41902660800 | - | 3360 | 232236 | 0.014468 | 8 | 531 | |
82 | 48886437600 | - | 3456 | 241387 | 0.014317 | 8 | 4211 | |
83 | 64250746560 | - | 3584 | 440351 | 0.008139 | 9 | 52 | |
84 | 73329656400 | - | 3600 | 266983 | 0.013484 | 8 | 3311 | |
85 | 80313433200 | - | 3840 | 467403 | 0.008216 | 9 | 321 | |
86 | 97772875200 | - | 4032 | 286547 | 0.014071 | 8 | 5211 | |
87 | 128501493120 | - | 4096 | 529244 | 0.007739 | 9 | 62 | |
88 | 146659312800 | - | 4320 | 316236 | 0.013661 | 8 | 4311 | |
89 | 160626866400 | - | 4608 | 561065 | 0.008213 | 9 | 421 | |
90 | 240940299600 | - | 4800 | 623240 | 0.007702 | 9 | 331 | |
91 | 293318625600 | - | 5040 | 373244 | 0.013503 | 8 | 5311 | |
92 | 321253732800 | - | 5376 | 670993 | 0.008012 | 9 | 521 | |
93 | 481880599200 | - | 5760 | 743774 | 0.007744 | 9 | 431 | |
94 | 642507465600 | - | 6144 | 799574 | 0.007684 | 9 | 621 | |
95 | 963761198400 | - | 6720 | 884524 | 0.007597 | 9 | 531 | |
96 | 1124388064800 | - | 6912 | 918857 | 0.007522 | 9 | 4211 | |
97 | 1606268664000 | - | 7168 | 1002878 | 0.007147 | 9 | 522 | |
98 | 1686582097200 | - | 7200 | 1014877 | 0.007094 | 9 | 3311 | |
99 | 1927522396800 | - | 7680 | 1048383 | 0.007326 | 9 | 631 | |
100 | 2248776129600 | - | 8064 | 1088291 | 0.00741 | 9 | 5211 | |
101 | 3212537328000 | - | 8192 | 1185830 | 0.006908 | 9 | 622 | |
102 | 3373164194400 | - | 8640 | 1199750 | 0.007202 | 9 | 4311 | |
103 | 4497552259200 | - | 9216 | 1284854 | 0.007173 | 9 | 6211 | |
104 | 6746328388800 | - | 10080 | 1413882 | 0.007129 | 9 | 5311 | |
105 | 8995104518400 | - | 10368 | 1512270 | 0.006856 | 9 | 7211 | |
106 | 9316358251200 | - | 10752 | 2607576 | 0.004123 | 10 | 521 | |
107 | 13492656777600 | - | 11520 | 1661238 | 0.006935 | 9 | 6311 | |
108 | 18632716502400 | - | 12288 | 3095217 | 0.00397 | 10 | 621 | |
109 | 26985313555200 | - | 12960 | 1946228 | 0.006659 | 9 | 7311 | |
110 | 27949074753600 | - | 13440 | 3417004 | 0.003933 | 10 | 531 | |
111 | 32607253879200 | - | 13824 | 3547008 | 0.003897 | 10 | 4211 | |
112 | 46581791256000 | - | 14336 | 3864992 | 0.003709 | 10 | 522 | |
113 | 48910880818800 | - | 14400 | 3910396 | 0.003682 | 10 | 3311 | |
114 | 55898149507200 | - | 15360 | 4037208 | 0.003805 | 10 | 631 | |
115 | 65214507758400 | - | 16128 | 4188170 | 0.003851 | 10 | 5211 | |
116 | 93163582512000 | - | 16384 | 4557034 | 0.003595 | 10 | 622 | |
117 | 97821761637600 | - | 17280 | 4609691 | 0.003749 | 10 | 4311 | |
118 | 130429015516800 | - | 18432 | 4931474 | 0.003738 | 10 | 6211 | |
119 | 195643523275200 | - | 20160 | 5419232 | 0.00372 | 10 | 5311 | |
120 | 260858031033600 | - | 20736 | 5791113 | 0.003581 | 10 | 7211 | |
121 | 288807105787200 | - | 21504 | 10174493 | 0.002114 | 11 | 521 | |
122 | 391287046550400 | - | 23040 | 6354166 | 0.003626 | 10 | 6311 | |
123 | 577614211574400 | - | 24576 | 12036043 | 0.002042 | 11 | 621 | |
124 | 782574093100800 | - | 25920 | 7431427 | 0.003488 | 10 | 7311 | |
125 | 866421317361600 | - | 26880 | 13263098 | 0.002027 | 11 | 531 | |
126 | 1010824870255200 | - | 27648 | 13758600 | 0.00201 | 11 | 4211 | |
127 | 1444035528936000 | - | 28672 | 14970020 | 0.001915 | 11 | 522 | |
128 | 1516237305382800 | - | 28800 | 15143047 | 0.001902 | 11 | 3311 | |
129 | 1732842634723200 | - | 30720 | 15625881 | 0.001966 | 11 | 631 | |
130 | 2021649740510400 | - | 32256 | 16200656 | 0.001991 | 11 | 5211 | |
131 | 2888071057872000 | - | 32768 | 17604683 | 0.001861 | 11 | 622 | |
132 | 3032474610765600 | - | 34560 | 17805134 | 0.001941 | 11 | 4311 | |
133 | 4043299481020800 | - | 36864 | 19029413 | 0.001937 | 11 | 6211 | |
134 | 6064949221531200 | - | 40320 | 20884747 | 0.001931 | 11 | 5311 | |
135 | 8086598962041600 | - | 41472 | 22298971 | 0.00186 | 11 | 7211 |
(These observations do not include those well-known by those interested in HCNs)
Question:
(1) k = A301893(i)
(2) Index of A301893(i) in A244052. If A301893(i) is not in A244052, left blank.
(3) rcf(k) = A010846(k).
(4) τ(k).
(5) τ(k)/rcf(k)
PC(n) = A287352(n) is the "pi-code" or first differences of indices of prime divisors p of n, e.g., A287352(60) = 1,0,1,1 since 60 = 2 × 2 × 3 × 5. The terms are delimited by (.).
i | k = (1) | (2) | (3) | (4) | (5) | PC(k) |
--- | -------- | ----- | ----- | ----- | ---------- | ---------- |
1 | 1 | 1 | 1 | 1 | 1 | 0 |
2 | 6 | 4 | 5 | 4 | 0.8 | 1.1 |
3 | 10 | 5 | 6 | 4 | 0.666667 | 1.2 |
4 | 18 | 7 | 10 | 6 | 0.6 | 1.1.0 |
5 | 22 | 7 | 4 | 0.571429 | 1.4 | |
6 | 30 | 9 | 18 | 8 | 0.444444 | 1.1.1 |
7 | 42 | 10 | 19 | 8 | 0.421053 | 1.1.2 |
8 | 66 | 22 | 8 | 0.363636 | 1.1.3 | |
9 | 78 | 23 | 8 | 0.347826 | 1.1.4 | |
10 | 102 | 25 | 8 | 0.32 | 1.1.5 | |
11 | 114 | 26 | 8 | 0.307692 | 1.1.6 | |
12 | 138 | 27 | 8 | 0.296296 | 1.1.7 | |
13 | 150 | 15 | 41 | 12 | 0.292683 | 1.1.1.0 |
14 | 174 | 29 | 8 | 0.275862 | 1.1.8 | |
15 | 210 | 17 | 68 | 16 | 0.235294 | 1.1.1.1 |
16 | 330 | 18 | 77 | 16 | 0.207792 | 1.1.1.2 |
17 | 390 | 19 | 80 | 16 | 0.2 | 1.1.1.3 |
18 | 510 | 86 | 16 | 0.186047 | 1.1.1.4 | |
19 | 570 | 88 | 16 | 0.181818 | 1.1.1.5 | |
20 | 690 | 94 | 16 | 0.170213 | 1.1.1.6 | |
21 | 870 | 101 | 16 | 0.158416 | 1.1.1.7 | |
22 | 1110 | 106 | 16 | 0.150943 | 1.1.1.9 | |
23 | 1230 | 110 | 16 | 0.145455 | 1.1.1.10 | |
24 | 1290 | 112 | 16 | 0.142857 | 1.1.1.11 | |
25 | 1410 | 114 | 16 | 0.140351 | 1.1.1.12 | |
26 | 1590 | 118 | 16 | 0.135593 | 1.1.1.13 | |
27 | 1770 | 121 | 16 | 0.132231 | 1.1.1.14 | |
28 | 1830 | 122 | 16 | 0.131148 | 1.1.1.15 | |
29 | 2010 | 126 | 16 | 0.126984 | 1.1.1.16 | |
30 | 2130 | 128 | 16 | 0.125 | 1.1.1.17 | |
31 | 2190 | 130 | 16 | 0.123077 | 1.1.1.18 | |
32 | 2310 | 29 | 283 | 32 | 0.113074 | 1.1.1.1.1 |
33 | 2730 | 30 | 295 | 32 | 0.108475 | 1.1.1.1.2 |
34 | 3570 | 31 | 313 | 32 | 0.102236 | 1.1.1.1.3 |
35 | 3990 | 32 | 322 | 32 | 0.099379 | 1.1.1.1.4 |
36 | 4830 | 339 | 32 | 0.094395 | 1.1.1.1.5 |
(See full table of 1114 rows in this text file.)
* it is unclear whether this is the maximum value of j for m in A244052 tier 7.
Based on Conjecture 1.1, we re-examine the terms m that are in both A002182 and A244052, then produce a chart plotting them with n = primorial A002110(ω(m)) and k = m/A002110(ω(m)).
The intersection of A002182 and A244052 is finite, consisting of 13 terms: {1, 2, 4, 6, 12, 24, 60, 120, 180, 840, 1260, 1680, 27720}. All of these terms are also in A060735 and not in A288813, as the latter are squarefree and have “gaps” among prime divisors. This intersection has the following number of terms in the “tiers” 0 through 5 of A244052:
{1, 2, 3, 3, 3, 1}.
A “tier” n consists of all terms m in A244052 with A002110(n) ≤ m < A002110(n + 1). If we look at A060735 as a number triangle T(n,k) = k × A002110(n) with 1 ≤ k < prime(n + 1), the terms are plotted below. The top figure is the coordinates (n,k) in A060735. The middle figure is the decimal number, and the bottom set of numbers delimited by “.” are the exponents of the prime pertaining to the place in which the exponent appears. For example, “2.1.1” → 2² × 3 × 5 = 60.
Note: the consideration of Table 3 has led to further investigation that continues at this data brief.
If we take the investigation quite far, we can produce the following graph of {m/A002110(ω(m)), ω(m)}, eliminating columns m/A002110(ω(m)) without HCNs. The black pixels represent an HCN (i.e., m in A002182) while the red pixels represent an SHCN (i.e., m in A002201, also in A002182, since A002201 is a subset of A002182). The HCNs plotted here derive from [1], while the SHCNs plotted in red derive from my processing the b-file at A000705.
A000005: Divisor counting function τ(n), i.e., number of numbers 1 ≤ d ≤ n such that d | ne with 0 ≤ e ≤ 1.
A000079: Nonnegative integer powers of 2.
A001221: ω(n) = Number of distinct prime divisors of n.
A002110: The primorials.
A002182: Highly composite numbers, i.e., where records are set in A000005.
A002183: Records in A000005 = A000005(A002182(n)).
A010846: Regular counting function, abbreviated rcf(n), i.e., number of numbers 1 ≤ m ≤ n such that m | ne with e ≥ 0.
A054841: For n = Product_pe, write ek in the k-th place, or write 0 if pk does not divide n.
A060735: Irregular triangle read by rows: T(n, k) = k × A002110(n) for 1 ≤ k < prime(n + 1).
A108602: A001221(A002182(n)).
A244052: Highly regular numbers, i.e., where records are set in A010846.
A288813: Irregular triangle read by rows: T(m, k) is the list of squarefree numbers A002110(m) < t < 2 × A002110(m) such that A001221(t) = m.
A301892: a(n) = A010846(A002182(n)).
A301893: Where records occur in A010846(n)/A000005(n).
See [2] for these and other A-number sequences in this work.
[1]: Achim Flammenkamp, “Highly Composite Numbers”, retrieved 2018 0329 2330 GMT. Downloads appear at the bottom of page and require “gunzip” application.
[2]: Neil Sloane, The Online Encyclopedia of Integer Sequences, retrieved 2018 0329 2330 GMT. See “Concerns Sequences” for individual links.
Original text-format data brief can be seen here.
////// Revision Record //////
201803281015 Created.
201803281330 A301892 extended to 115 terms.
201803281945 A301892 extended to 125 terms.
201803282030 Table 3 added.
201803290830 A301892 extended to 135 terms.
201803290845 Converted Table 1 last column to MN( A002182(n)/A002110(A108602(n)) ).
201803310845 Data brief converted to HTML; portion ascribed to A301413 partitioned.
201803311415 Improved tables and charts.
(Updated 29 March 2018)