A002110, A002182, A244052, A293555, A300156, A292867, A300860, and A300859.
Michael De Vlieger, St. Louis, Missouri, 201803161545.
Concerns sequences:
A000005: Divisor counting function τ(n), i.e., number of numbers 1 ≤ d ≤ n such that d | ne with 0 ≤ e ≤ 1.
A000010: Euler totient function φ(n), i.e., number of 1 ≤ t < n such that gcd(t, n) = 1.
A001221: ω(n) = Number of distinct prime divisors of n.
A002110: The primorials.
A002182: Highly composite numbers, i.e., where records are set in A000005.
A010846: Regular counting function, abbreviated rcf(n), i.e., number of 1 ≤ m ≤ n such that m | ne with e ≥ 0.
A045763:
Number of nondivisors 1 < k < n such that gcd(k, n) > 1.
A243822: Number of nondivisors k in the cototient of n that divide ne with e > 1.
A243823: Number of nondivisors k in the cototient of n that do not divide ne.
A244052: Highly regular numbers, i.e., where records are set in A010846.
A287352 First differences of indices of prime divisors p of n (used as PC(n) = compact multiplicity notation).
A292867 Indices of records in A243823. (semitotatives).
A293555 Indices of records in A243822. (“Highly semidivisible numbers”)
A300156 Indices of records in A299990(n) = A243822(n) − A000005(n). (“Highly semidivisor-dominant numbers”)
A300858 a(n) = A243823(n) − A243822(n).
A300859 Indices of records in A045763.
A300860 Indices of records in A300858.
See [1] for these and other A-number sequences in this work.
Foreword
Table 1: Concordance.
Consider the range of integers 1 ≤ m ≤ n. Within this range are divisors d | n and the reduced residue system that contains the totatives t such that gcd(t, n) = 1. The set of divisors and the RRS have a common element in the empty product, 1. The numbers that are not in the RRS are said to occupy the cototient of n. The divisors d > 1 appear within the cototient for all n > 1, but for composite n > 4 there is at least one nondivisor k in the cototient of n. These k have at least one prime divisor p that also divides n.
There are two species of k; k | ne with e > 1, and k that do not divide ne. The former we call semidivisors, while the latter are called semitotatives of n. For composite n with ω(n) = 1, we have only semitotatives, but for n = 6, we have only one semidivisor (4) in the cototient. All other composite n have at least one of both species of k. From this, we can classify each 1 < m ≤ n as a divisor, semidivisor, semitotative, or totative with respect to n, with 1 being a totative that divides n.
We can produce record transforms of the counting functions of the four species, divisor, semidivisor, semitotative, and totative. These functions are the divisor counting function (A000005), A243822, A243823, and the Euler totient function (A000010) respectively. Further, counting functions that conflate two of the species do exist: the regular counting function A010846 = A000005 + A243822 (numbers 1 ≤ m ≤ n such that m | ne with e ≥ 0.) and the "neutral" counting function A045763 = A243822 + A243823 = n − (A000005 + A000010 − 1). These six functions generate the following sequences that list record-setters: A002182, A293555, A292867, A006093, A244052, and A300859, in order of their presentation herein.
Regarding the conflated counting functions A010846 (regulars) and A045763 (neutrals), we produce functions that yield the difference of the component species: A299990(n) = A243822(n) − A000005(n), and A300858(n) = A243823(n) − A243822(n). Then we can produce record-setter lists for those comparisons, A300156 (semidivisor vs. divisor) and A300860 (semitotative vs. semidivisor).
This concordance produces a set T = union of all terms less than “lim” that appear in A002182, A293555, A292867, A244052, A300860, A300859, and A300156. (The sequence A006093 is too large for a concordance, but positions of the elements t of T in that sequence are furnished). This study examines the record-setting sequences for any correlation and decomposes the terms in T. We also examine the index of t in A002110 (the primorials) as the sequence is a subset of A244052.
The variable lim = 36 × 106. This is the size of the A010846 dataset personally maintained.
n = index
m = Union of terms < lim in A002110, A002182, A244052, A293555, A300156, A292867, A300860, and A300859.
(1) index of n in A002182, indices of records in A000005 (i.e., the highly composite numbers).
(2) index of m in A002110, the primorials, products of the smallest k primes.
(3) index of m in A244052, indices of records in A010846. (regular numbers).
(4) index of m in A293555, indices of records in A243822. (semidivisors).
(5) index of m in A300156, indices of records in A299990(n) = A243822(n) − A000005(n).
(6) index of m in A292867, indices of records in A243823. (semitotatives).
(7) index of m in A300860, indices of records in A300858(n) = A243823(n) − A243822(n).
(8) index of m in A300859, indices of records in A045763. (neutrals).
(9) index of m in A006093, indices of records in A000010. (totatives).
A287352(m) = “π-code”.
n | m | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | PC(m) |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
2 | 2 | 2 | 2 | 2 | 2 | 1 | |||||
3 | 4 | 3 | 3 | 3 | 1 | ||||||
4 | 6 | 4 | 3 | 4 | 2 | 2 | 4 | 1.1 | |||
5 | 8 | 2 | 2 | 1.0.0 | |||||||
6 | 10 | 5 | 3 | 3 | 5 | 1.2 | |||||
7 | 12 | 5 | 6 | 6 | 1.0.1 | ||||||
8 | 14 | 3 | 4 | 1.3 | |||||||
9 | 15 | 3 | 2.1 | ||||||||
10 | 16 | 4 | 4 | 7 | 1.0.0.0 | ||||||
11 | 18 | 7 | 4 | 5 | 8 | 1.1.0 | |||||
12 | 20 | 5 | 1.0.2 | ||||||||
13 | 22 | 6 | 6 | 9 | 1.4 | ||||||
14 | 24 | 6 | 8 | 1.0.0.1 | |||||||
15 | 26 | 7 | 5 | 7 | 1.5 | ||||||
16 | 27 | 6 | 2.0.0 | ||||||||
17 | 28 | 8 | 7 | 10 | 1.0.3 | ||||||
18 | 30 | 4 | 9 | 5 | 2 | 8 | 11 | 1.1.1 | |||
19 | 32 | 9 | 8 | 1.0.0.0.0 | |||||||
20 | 36 | 7 | 9 | 12 | 1.0.1.0 | ||||||
21 | 38 | 10 | 10 | 1.7 | |||||||
22 | 40 | 11 | 13 | 1.0.0.2 | |||||||
23 | 42 | 10 | 6 | 3 | 11 | 14 | 1.1.2 | ||||
24 | 44 | 12 | 9 | 1.0.4 | |||||||
25 | 46 | 13 | 15 | 1.8 | |||||||
26 | 48 | 8 | 14 | 1.0.0.0.1 | |||||||
27 | 50 | 15 | 12 | 1.2.0 | |||||||
28 | 52 | 16 | 10 | 16 | 1.0.5 | ||||||
29 | 54 | 17 | 13 | 1.1.0.0 | |||||||
30 | 56 | 18 | 11 | 1.0.0.3 | |||||||
31 | 58 | 19 | 17 | 1.9 | |||||||
32 | 60 | 9 | 11 | 7 | 14 | 18 | 1.0.1.1 | ||||
33 | 62 | 20 | 12 | 1.1 | |||||||
34 | 64 | 21 | 13 | 1.0.0.0.0.0 | |||||||
35 | 66 | 4 | 15 | 19 | 1.1.3 | ||||||
36 | 68 | 22 | 1.0.6 | ||||||||
37 | 72 | 23 | 21 | 1.0.0.1.0 | |||||||
38 | 76 | 14 | 1.0.7 | ||||||||
39 | 78 | 8 | 5 | 24 | 16 | 22 | 1.1.4 | ||||
40 | 80 | 25 | 15 | 1.0.0.0.2 | |||||||
41 | 84 | 12 | 9 | 17 | 1.0.1.2 | ||||||
42 | 86 | 26 | 1.13 | ||||||||
43 | 88 | 27 | 16 | 24 | 1.0.0.4 | ||||||
44 | 90 | 13 | 10 | 6 | 18 | 1.1.0.1 | |||||
45 | 92 | 28 | 1.0.8 | ||||||||
46 | 94 | 29 | 1.14 | ||||||||
47 | 96 | 30 | 17 | 25 | 1.0.0.0.0.1 | ||||||
48 | 100 | 31 | 18 | 26 | 1.0.2.0 | ||||||
49 | 102 | 7 | 19 | 27 | 1.1.5 | ||||||
50 | 104 | 19 | 1.0.0.5 | ||||||||
51 | 108 | 32 | 29 | 1.0.1.0.0 | |||||||
52 | 112 | 20 | 30 | 1.0.0.0.3 | |||||||
53 | 114 | 8 | 33 | 20 | 1.1.6 | ||||||
54 | 120 | 10 | 14 | 21 | 1.0.0.1.1 | ||||||
55 | 122 | 34 | 21 | 1.17 | |||||||
56 | 124 | 35 | 22 | 1.0.10 | |||||||
57 | 126 | 11 | 36 | 22 | 31 | 1.1.0.2 | |||||
58 | 128 | 23 | 1.0.0.0.0.0.0 | ||||||||
59 | 130 | 37 | 32 | 1.2.3 | |||||||
60 | 132 | 38 | 23 | 1.0.1.3 | |||||||
61 | 138 | 9 | 39 | 24 | 34 | 1.1.7 | |||||
62 | 144 | 40 | 24 | 1.0.0.0.1.0 | |||||||
63 | 150 | 15 | 12 | 10 | 25 | 36 | 1.1.1.0 | ||||
64 | 156 | 41 | 37 | 1.0.1.4 | |||||||
65 | 160 | 42 | 25 | 1.0.0.0.0.2 | |||||||
66 | 162 | 43 | 38 | 1.1.0.0.0 | |||||||
67 | 168 | 26 | 1.0.0.1.2 | ||||||||
68 | 174 | 44 | 27 | 1.1.8 | |||||||
69 | 176 | 26 | 1.0.0.0.4 | ||||||||
70 | 180 | 11 | 16 | 28 | 42 | 1.0.1.0.1 | |||||
71 | 184 | 27 | 1.0.0.8 | ||||||||
72 | 186 | 45 | 29 | 1.1.9 | |||||||
73 | 192 | 46 | 28 | 44 | 1.0.0.0.0.0.1 | ||||||
74 | 198 | 30 | 46 | 1.1.0.3 | |||||||
75 | 200 | 29 | 1.0.0.2.0 | ||||||||
76 | 204 | 47 | 31 | 1.0.1.5 | |||||||
77 | 210 | 5 | 17 | 13 | 11 | 32 | 47 | 1.1.1.1 | |||
78 | 216 | 48 | 30 | 1.0.0.1.0.0 | |||||||
79 | 222 | 49 | 48 | 1.1.10 | |||||||
80 | 228 | 50 | 50 | 1.0.1.6 | |||||||
81 | 234 | 51 | 33 | 1.1.0.4 | |||||||
82 | 240 | 12 | 52 | 34 | 53 | 1.0.0.0.1.1 | |||||
83 | 246 | 53 | 31 | 35 | 1.1.11 | ||||||
84 | 248 | 32 | 1.0.0.10 | ||||||||
85 | 250 | 33 | 54 | 1.2.0.0 | |||||||
86 | 252 | 54 | 36 | 1.0.1.0.2 | |||||||
87 | 256 | 34 | 55 | 1.0.0.0.0.0.0.0 | |||||||
88 | 258 | 55 | 37 | 1.1.12 | |||||||
89 | 264 | 56 | 38 | 1.0.0.1.3 | |||||||
90 | 270 | 57 | 39 | 58 | 1.1.0.0.1 | ||||||
91 | 272 | 35 | 1.0.0.0.6 | ||||||||
92 | 276 | 58 | 36 | 59 | 1.0.1.7 | ||||||
93 | 282 | 59 | 37 | 61 | 1.1.13 | ||||||
94 | 288 | 60 | 38 | 1.0.0.0.0.1.0 | |||||||
95 | 294 | 40 | 1.1.2.0 | ||||||||
96 | 300 | 61 | 41 | 1.0.1.1.0 | |||||||
97 | 306 | 62 | 63 | 1.1.0.5 | |||||||
98 | 312 | 63 | 65 | 1.0.0.1.4 | |||||||
99 | 318 | 64 | 39 | 42 | 1.1.14 | ||||||
100 | 320 | 40 | 1.0.0.0.0.0.2 |
(Click here to refer to key)
n | m | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | PC(m) |
---- | ---- | ||||||||||
101 | 324 | 65 | 41 | 1.0.1.0.0.0 | |||||||
102 | 330 | 18 | 14 | 12 | 43 | 67 | 1.1.1.2 | ||||
103 | 336 | 66 | 68 | 1.0.0.0.1.2 | |||||||
104 | 342 | 67 | 1.1.0.6 | ||||||||
105 | 348 | 68 | 42 | 70 | 1.0.1.8 | ||||||
106 | 354 | 69 | 43 | 1.1.15 | |||||||
107 | 360 | 13 | 70 | 44 | 1.0.0.1.0.1 | ||||||
108 | 366 | 71 | 44 | 73 | 1.1.16 | ||||||
109 | 372 | 72 | 45 | 74 | 1.0.1.9 | ||||||
110 | 378 | 73 | 45 | 75 | 1.1.0.0.2 | ||||||
111 | 384 | 74 | 46 | 1.0.0.0.0.0.0.1 | |||||||
112 | 390 | 19 | 15 | 13 | 46 | 1.1.1.3 | |||||
113 | 396 | 75 | 78 | 1.0.1.0.3 | |||||||
114 | 402 | 76 | 1.1.17 | ||||||||
115 | 408 | 77 | 80 | 1.0.0.1.5 | |||||||
116 | 414 | 78 | 47 | 1.1.0.7 | |||||||
117 | 420 | 20 | 16 | 47 | 82 | 1.0.1.1.1 | |||||
118 | 426 | 79 | 48 | 1.1.18 | |||||||
119 | 432 | 80 | 49 | 84 | 1.0.0.0.1.0.0 | ||||||
120 | 438 | 81 | 85 | 1.1.19 | |||||||
121 | 444 | 82 | 1.0.1.10 | ||||||||
122 | 450 | 83 | 48 | 1.1.0.1.0 | |||||||
123 | 456 | 84 | 88 | 1.0.0.1.6 | |||||||
124 | 462 | 49 | 90 | 1.1.2.1 | |||||||
125 | 468 | 85 | 50 | 1.0.1.0.4 | |||||||
126 | 474 | 86 | 51 | 1.1.20 | |||||||
127 | 480 | 87 | 50 | 1.0.0.0.0.1.1 | |||||||
128 | 486 | 88 | 52 | 93 | 1.1.0.0.0.0 | ||||||
129 | 498 | 89 | 95 | 1.1.21 | |||||||
130 | 504 | 90 | 51 | 1.0.0.1.0.2 | |||||||
131 | 510 | 14 | 52 | 1.1.1.4 | |||||||
132 | 516 | 91 | 53 | 1.0.1.12 | |||||||
133 | 522 | 92 | 54 | 99 | 1.1.0.8 | ||||||
134 | 528 | 93 | 55 | 1.0.0.0.1.3 | |||||||
135 | 534 | 94 | 56 | 1.1.22 | |||||||
136 | 540 | 95 | 53 | 100 | 1.0.1.0.0.1 | ||||||
137 | 546 | 54 | 101 | 1.1.2.2 | |||||||
138 | 552 | 96 | 57 | 1.0.0.1.7 | |||||||
139 | 558 | 97 | 58 | 1.1.0.9 | |||||||
140 | 564 | 98 | 59 | 1.0.1.13 | |||||||
141 | 570 | 15 | 55 | 105 | 1.1.1.5 | ||||||
142 | 576 | 99 | 60 | 106 | 1.0.0.0.0.0.1.0 | ||||||
143 | 582 | 100 | 1.1.23 | ||||||||
144 | 588 | 101 | 1.0.1.2.0 | ||||||||
145 | 594 | 102 | 1.1.0.0.3 | ||||||||
146 | 600 | 103 | 56 | 110 | 1.0.0.1.1.0 | ||||||
147 | 612 | 61 | 112 | 1.0.1.0.5 | |||||||
148 | 618 | 104 | 62 | 114 | 1.1.25 | ||||||
149 | 624 | 105 | 63 | 1.0.0.0.1.4 | |||||||
150 | 630 | 21 | 17 | 16 | 57 | 115 | 1.1.0.1.1 | ||||
151 | 636 | 106 | 64 | 1.0.1.14 | |||||||
152 | 642 | 107 | 65 | 117 | 1.1.26 | ||||||
153 | 648 | 108 | 66 | 1.0.0.1.0.0.0 | |||||||
154 | 654 | 109 | 1.1.27 | ||||||||
155 | 660 | 58 | 121 | 1.0.1.1.2 | |||||||
156 | 666 | 110 | 1.1.0.10 | ||||||||
157 | 672 | 111 | 122 | 1.0.0.0.0.1.2 | |||||||
158 | 684 | 112 | 67 | 1.0.1.0.6 | |||||||
159 | 690 | 113 | 59 | 125 | 1.1.1.6 | ||||||
160 | 696 | 114 | 68 | 1.0.0.1.8 | |||||||
161 | 702 | 115 | 1.1.0.0.4 | ||||||||
162 | 708 | 116 | 69 | 127 | 1.0.1.15 | ||||||
163 | 714 | 117 | 60 | 1.1.2.3 | |||||||
164 | 720 | 14 | 118 | 70 | 1.0.0.0.1.0.1 | ||||||
165 | 732 | 71 | 130 | 1.0.1.16 | |||||||
166 | 738 | 72 | 131 | 1.1.0.11 | |||||||
167 | 744 | 119 | 73 | 1.0.0.1.9 | |||||||
168 | 750 | 120 | 61 | 133 | 1.1.1.0.0 | ||||||
169 | 756 | 74 | 134 | 1.0.1.0.0.2 | |||||||
170 | 762 | 75 | 1.1.29 | ||||||||
171 | 768 | 121 | 76 | 136 | 1.0.0.0.0.0.0.0.1 | ||||||
172 | 780 | 122 | 62 | 1.0.1.1.3 | |||||||
173 | 786 | 123 | 138 | 1.1.30 | |||||||
174 | 792 | 124 | 1.0.0.1.0.3 | ||||||||
175 | 798 | 63 | 1.1.2.4 | ||||||||
176 | 804 | 125 | 77 | 1.0.1.17 | |||||||
177 | 810 | 126 | 64 | 141 | 1.1.0.0.0.1 | ||||||
178 | 816 | 78 | 1.0.0.0.1.5 | ||||||||
179 | 822 | 79 | 143 | 1.1.31 | |||||||
180 | 828 | 80 | 145 | 1.0.1.0.7 | |||||||
181 | 834 | 127 | 81 | 1.1.32 | |||||||
182 | 840 | 15 | 22 | 18 | 128 | 65 | 1.0.0.1.1.1 | ||||
183 | 846 | 129 | 82 | 1.1.0.13 | |||||||
184 | 852 | 130 | 83 | 147 | 1.0.1.18 | ||||||
185 | 858 | 131 | 149 | 1.1.3.1 | |||||||
186 | 864 | 132 | 84 | 1.0.0.0.0.1.0.0 | |||||||
187 | 870 | 17 | 133 | 66 | 1.1.1.7 | ||||||
188 | 882 | 134 | 153 | 1.1.0.2.0 | |||||||
189 | 900 | 135 | 67 | 1.0.1.0.1.0 | |||||||
190 | 906 | 85 | 155 | 1.1.34 | |||||||
191 | 912 | 86 | 1.0.0.0.1.6 | ||||||||
192 | 924 | 68 | 1.0.1.2.1 | ||||||||
193 | 930 | 136 | 69 | 1.1.1.8 | |||||||
194 | 936 | 87 | 159 | 1.0.0.1.0.4 | |||||||
195 | 948 | 88 | 1.0.1.20 | ||||||||
196 | 954 | 137 | 89 | 1.1.0.14 | |||||||
197 | 960 | 138 | 90 | 70 | 1.0.0.0.0.0.1.1 | ||||||
198 | 966 | 71 | 163 | 1.1.2.5 | |||||||
199 | 972 | 91 | 1.0.1.0.0.0.0 | ||||||||
200 | 990 | 19 | 18 | 139 | 72 | 167 | 1.1.0.1.2 |
Click here to visit the original concordance in text form, showing 1981 terms.
[1]: Neil Sloane, The Online Encyclopedia of Integer Sequences, retrieved 2018 0329 2330 GMT. See “Concerns Sequences” for individual links.
Revision record.
201803161545 created.
201804020745 convert to HTML.
(Updated 2 April 2018)