The Relay Race Sequence.

A sequence of Brian Beard, posed 5 February 2021.
Written by Michael Thomas De Vlieger, St. Louis, Missouri, 2021 0205.

Abstract.

This brief examines the behavior of a conditional self-referential recently drafted sequence OEIS A341130 as seen in the plot of the function.

Introduction.

Recall that 1, the empty product, is neither prime nor composite, and that if we have a number m > 1 with two divisors (i.e., the trivial divisors 1 and m itself) we call it prime, else it is composite. Let us refer to the status of a number m being prime or not using the term “primality”.

Let a(n) = n for 1 ≤ n ≤ 2. Thereafter, if a(n−1) and a(n−2) are of the same state of primality, then a(n) = | a(n−1) − a(n−2) |, else a(n) = a(n−1) + a(n−2).

The sequence begins:

1, 2, 3, 1, 4, 5, 9, 14, 5, 19, 14, 33, 19, 52, 71, 123, 194, 71, 265, 336, 71, 407, 478, 71, 549, 620, 71, 691, 620, 1311, 691, 2002, 2693, 4695, 7388, 2693, 4695, 7388, 2693, 10081, 12774, 2693, 15467, 12774, 28241, 15467, 43708, 59175, 15467, 74642, 90109, 15467, 105576, 121043, ...

Code 1 generates the sequence. Click here for a text file containing 216 + 2 terms.

a(3) = 3 since 1 and 2 have dissimilar primality, hence 1 + 2 = 3.
a(4) = 1 since 2 and 3 are both prime, hence | 2 − 3 | = 1.
a(5) = 4 since 3 and 1 have dissimilar primality, hence 3 + 1 = 4.
a(6) = 5 since 1 and 4 have dissimilar primality, so 1 + 4 = 5.
a(7) = 9 because 4 is composite but 5 is prime, so 4 + 5 = 9.
a(8) = 14 since 5 and 9 have dissimilar primality, hence 5 + 9 = 14.
a(9) = 5 since 9 and 14 are both composite, therefore | 9 − 14 | = 5, etc.

Figure 1 is a log plot of a(n) for 1 ≤ n ≤ 28, showing nonprimes in blue and primes in red (Click for an extended log plot of a(n) for 1 ≤ n ≤ 212 or an even more extended plot for 1 ≤ n ≤ 216):

We note a curious repetition of primes in this sequence, or rather, that there are some “singleton” primes q that only appear once, while most primes p appear multiple times, that is, every third term upon first appearing. Given 216 terms m in a(n), there are 4 distinct primes q: {2, 3, 760228181, 4410782411489292213567920279417}, of 135 distinct primes in all (listed here). The primes hold a plateau until a necessarily dissimilar, larger prime appears in the interposing escalation. The larger prime thus takes over and may repeat. There doesn't seem to be a reason why we cannot have additional q, as q' arises the first time we have m + q = q', but only sustains for a single cycle.

The records for repetition are:

1, 2, 5, 15, 38, 41, 66, 84, 86, 229, 262, 313, 457, 601, 769, 810, 882, ...

The indices of these records in sequence a are the following, respectively:

2, 6, 15, 40, 178, 351, 670, 1140, 1422, 2995, 5484, 8506, 14482, 17472, 22204, 26706, 41401, ...

These are set by the primes:

2, 5, 71, 15467, 25628197501, 417526936971769, 23527909757857985943851, 26256320042062297940727797057, 1002533887734553211238539215857293, 33893917858094858717598054976100088751264704982634455397, ...

Additionally, we see that 1 is repeated, as are any composite appearing after two necessarily dissimilar primes. The duplicated nonprimes are:

1, 14, 620, 12774, 1368484, 705795468, 24162173852, 9705756734634, 33808029860992228, 20081633774728459090, 22056100427251978417408, 276251364895133826212564270, ...

The sequence progresses in cycles that feature two nonprimes separating instances of the same or dissimilar primes. Suppose p is a prime that is repeated a number of times, and we have a series of composites c that have the difference p. Now suppose the number q following an instance of p happens also to be prime. The ensuing term m' = | pq |, which is the number c that preceded p. Now given that q and c have dissimilar primality, we have the next term the sum q + c, and we are starting a new cycle where the increment is q. Suppose c is the first and composite term following a prime p, but q is the second. Since q and c have dissimilar primality, we have the sum q and c and do not have a repeated composite. Instead, the prime p “passes the baton” to q without a repeated c, and we continue with the increment q.

Finally, we examine the case of a singleton prime, using a(151) = 760228181 as an example. We list the terms a(n) with n preceding the term, and the designation “C” if composite and “P” if prime:

145    542497329   C
146    596930042   C
147     54432713   P
148    651362755   C
149    705795468   C
150     54432713   P
151    760228181   P
152    705795468   C
153   1466023649   P
154   2171819117   C
155   3637842766   C
156   1466023649   P
...

Here, the prime p = 54432713 is the increment, and immediately following its seventh repetition in the sequence, we strike a prime q = 760228181. Thus we return to the previous composite c = 705795468, commencing iteration using the step q = 760228181. 705795468 + 760228181 = 1466023649, a third prime number r. Thus, we have no further occurrences of q in the sequence, as r is the new step value, going on to occur 9 times in the sequence.

We observe a relatively regular exponentially spaced occasion of prime plateaus as n increases. This appears to be a manifestation of the general abatement of the commonness of primes at a given magnitude.

This “relay sequence” is like a relay racing team passing the baton, only that the “runners”, which, outside of the very first, are primes p, taking great big strides that are p units long. Therefore the “race” gets ridiculously “fast” as we proceed further into the sequence.

This concludes our examination.

Appendix:

General note: visit the index for other briefs covering OEIS sequences.

Table A: distinct primes p that appear in a(n) for 1 ≤ n ≤ 216. The prime p appears k times in a(n), first at a(n1) and last at a(n2). Because p becomes large as i increases, we use log(p) where log is the natural logarithm. Here, we make no distinction between repeated p and singleton q. See this text file for a list of the smallest 135 distinct primes p in a(n). Here we leave out the 135th prime because its run was yet ongoing when the program reached 216 terms.

  i             p   log(p)       k     n_1     n_2
--------------------------------------------------
  1             2     0.693147   1       2
  2             3     1.09861    1       3
  3             5     1.60944    2       6       9
  4            19     2.94444    2      10      13
  5            71     4.26268    5      15      27
  6           691     6.53814    2      28      31
  7          2693     7.89841    3      33      39
  8         15467     9.64646   15      40      82
  9        461317    13.0418     2      84      87
 10       1829801    14.4197    15      88     130
 11      54432713    17.8125     7     132     150
 12     760228181    20.4491     1     151
 13    1466023649    21.1058     9     153     177
 14   25628197501    23.967     38     178     289
 15                  28.2969     3     291     297
 16                  30.0865    18     298     349
 17                  33.6654    41     351     471
 18                  38.0717    14     472     511
 19                  41.4035    11     513     543
 20                  44.4929    35     544     646
 21                  48.7408     8     648     669
 22                  51.5125    66     670     865
 23                  56.3948    45     867     999
 24                  60.8945    47    1000    1138
 25                  65.4377    84    1140    1389
 26                  70.5616     1    1390
 27                  71.2518     6    1392    1407
 28                  73.694      5    1408    1420
 29                  75.9878    86    1422    1677
 30                  81.1347     2    1678    1681
 31                  82.5196    26    1683    1758
 32                  86.466      6    1759    1774
 33                  88.9493     7    1776    1794
 34                  91.5824    67    1795    1993
 35                  96.4797    54    1995    2154
 36                 101.162     23    2155    2221
 37                 104.99      72    2223    2436
 38                 109.96      45    2437    2569
 39                 114.46      72    2571    2784
 40                 119.429     46    2785    2920
 41                 123.951     25    2922    2994
 42                 127.863    229    2995    3679
 43                 133.99     210    3681    4308
 44                 140.03      95    4309    4591
 45                 145.277     39    4593    4707
 46                 149.634     39    4708    4822
 47                 153.99     161    4824    5304
 48                 159.765     60    5305    5482
 49                 164.552    262    5484    6267
 50                 170.814     45    6268    6400
 51                 175.313    192    6402    6975
 52                 181.264    157    6976    7444
 53                 187.013      3    7446    7452
 54                 188.805    129    7453    7837
 55                 194.357    223    7839    8505
 56                 200.457    313    8506    9442
 57                 206.897     34    9444    9543
 58                 211.116    162    9544   10027
 59                 216.897    168   10029   10530
 60                 222.714     21   10531   10591
 61                 226.451     23   10593   10659
 62                 230.28     309   10660   11584
 63                 236.706     28   11586   11667
 64                 240.731    168   11668   12169
 65                 246.548     65   12171   12363
 66                 251.416      2   12364   12367
 67                 252.8       78   12369   12600
 68                 257.849    210   12601   13228
 69                 263.889    128   13230   13611
 70                 269.434     39   13612   13726
 71                 273.791     24   13728   13797
 72                 277.662     90   13798   14065
 73                 282.854    139   14067   14481
 74                 288.482    457   14482   15850
 75                 295.3       15   15852   15894
 76                 298.701    185   15895   16447
 77                 304.614    219   16449   17103
 78                 310.697     60   17104   17281
 79                 315.484     36   17283   17388
 80                 319.761     28   17389   17470
 81                 323.786    601   17472   19272
 82                 330.877     34   19273   19372
 83                 335.097    241   19374   20094
 84                 341.275      3   20095   20101
 85                 343.066    291   20103   20973
 86                 349.432    204   20974   21583
 87                 355.444    207   21585   22203
 88                 361.47     769   22204   24508
 89                 368.808    237   24510   25218
 90                 374.969    225   25219   25891
 91                 381.078    147   25893   26331
 92                 386.762    125   26332   26704
 93                 392.283    810   26706   29133
 94                 399.673    273   29134   29950
 95                 405.976    108   29952   30273
 96                 411.351     28   30274   30355
 97                 415.377     58   30357   30528
 98                 420.13     207   30529   31147
 99                 426.156     21   31149   31209
100                 429.893    219   31210   31864
101                 435.976    104   31866   32175
102                 441.313    276   32176   33001
103                 447.627      3   33003   33009
104                 449.418    140   33010   33427
105                 455.052     95   33429   33711
106                 460.299    348   33712   34753
107                 466.845    675   34755   36777
108                 474.053    591   36778   38548
109                 481.128    478   38550   39981
110                 487.99     291   39982   40852
111                 494.357    183   40854   41400
112                 500.259    882   41401   44044
113                 507.735    390   44046   45213
114                 514.394    420   45214   46471
115                 521.127    260   46473   47250
116                 527.381     54   47251   47410
117                 532.063    769   47412   49716
118                 539.402    150   49717   50164
119                 545.105    239   50166   50880
120                 551.275    246   50881   51616
121                 557.473     96   51618   51903
122                 562.731    132   51904   52297
123                 568.307     51   52299   52449
124                 572.932    261   52450   53230
125                 579.189     79   53232   53466
126                 584.252    625   53467   55339
127                 591.383    163   55341   55827
128                 597.17     642   55828   57751
129                 604.328    135   57753   58155
130                 609.926      3   58156   58162
131                 611.717     50   58164   58311
132                 616.321    561   58312   59992
133                 623.343    750   59994   62241
134                 630.657    285   62242   63094
...

Code 1: Generate a(n):

Block[{a = {1, 2}},
  Do[AppendTo[a,
    Which[MemberQ[{##}, 1], Abs[#1 + #2],
      SameQ @@ PrimeQ[{##}], Abs[#1 - #2],
      True, Abs[#1 + #2]]] & @@ a[[-2 ;; -1]], {i, 2^16}]; a]

Code 2: Plot a(n) in the style of Figure 1:

Block[{nn = 2^16, s = {}, t = {}, out = -100},
  Do[If[PrimeQ[#],
      AppendTo[s, out]; AppendTo[t, #],
      AppendTo[t, out]; AppendTo[s, #]] &@ ss[[i]], {i, nn}];
    ListPlot[{s, t}, ImageSize -> 1920, ScalingFunctions -> "Log",
      PlotStyle -> {Directive[Blue, PointSize[Small]],
      Directive[Red, PointSize[Small]]},
      PlotRange -> {{1, nn}, {1, Max@ ss[[1 ;; nn]]}}]]

Concerns OEIS sequences:

A341130 a(n).

Document Revision Record.

2021 0205 2200 Created.
2021 0205 1945 Final.