A113901 (Cino Hilliard), A363920 (Peter Luschny).
Written by Michael Thomas De Vlieger, St. Louis, Missouri, 2023 0621.
We examine sequences related to the product of the elementary number-theoretical counting functions Ω(n) and ω(n). We show that A113901(n) < n. Moreover, we see that A363920(n) is a sequence bereft of squarefree composites and numbers in A332785, comprised of fixed points A8578, and composite n → squareful m ∈ A1694.
Click here for the PDF.
Concerns OEIS sequences:
A000040, A000961, A001221, A001222, A001694, A005117, A013929, A024619, A113901, A120944, A126706, A246547, A286708, A303606, A332785, A363920.
To cite:
Michael Thomas De Vlieger, On A113901 = Ω(n)ω(n) and A363920 = nA113901(n), Simple Sequence Analysis, Article 20230720.