A self-referential internal divisor-sum sequence.

A sequence of David Sycamore.
Written by Michael Thomas De Vlieger, St. Louis, Missouri, 2021 0318.

Introduction.

We examine a self-referential sequence a that employs an internal divisor sum function, defined as follows:

a(1) = 1; a(n+1) = Σ_{d | a(n)} d cd, where cd is the number of instances of d | a(k) for 1 ≤ k < n.

The sequence a begins:

1, 1, 2, 5, 9, 17, 23, 30, 89, 98, 184, 399, 664, 1292, 2587, 2814, 6619, 6636, 18120, 54896, 110193, 153492, 358310, 645055, 774115, 928993, 1054187, 1116276, 3029874, 6151929, 9505403, 9635864, 20648677, 23744657, 23744691, 35510476, 63144245, 76468986, 182228133, ...

a(2) = 1 since we have 1 instance of 1 | a(k) for 1 ≤ k < n (which we shall abbreviate hereinafter as a count 1(1)).
a(3) = 2 since 2(1) = 2.
a(4) = 5 since 3(1) + 1(2) = 5.
a(5) = 9 since 4(1) + 1(5) = 9.
a(6) = 17 since 5(1) + 1(3) + 1(9) = 17.
a(7) = 23 since 6(1) + 1(17) = 23.
etc.

This sequence can be generated by Code 1; the numbers m become fairly large and the determination of the divisors of m begin to require quite some time to generate as we move past n = 300. We have generated 321 terms.

Let m = a(n), the progenitor of a(n + 1).

The sequence accelerates when m is highly divisible, and stalls when m is prime. In any case, the sequence strictly increases, since 1 | m for all m. Therefore a(n + 1) ≥ n + m for n > 3. We see that for m = p prime, a(n + 1) = n + m = n + p.

Furthermore it seems that smaller d might accrue instances in a granular way at the beginning of the sequence, but given enough iterations of the function, we might see a distribution that favors smaller highly divisible d over large prime d. This situation is likely akin to what is seen at the divisor-counting version of this sequence, A342616.

Figure 1 is an annotated log-log scatterplot of a(n) for 1 ≤ n ≤ 24. We color a(n+1) red if a(n) is prime.

Figure 1 illustrates the acceleration of the sequence given highly divisible m, and its retirement to a(n+1) = n + a(n).

Primes rarely appear in the sequence. For 1 ≤ n ≤ 321, we have the following primes:

2, 5, 17, 23, 89, 6619, 23744657, 922682749, 70964542696933, 11282319824706191924527, 2033275159493211496365849751

The paucity of primes in the sequence is likely due to their increasing rarity as m increases. It seems unlikely that there would be a point after which all terms in a are composite, mainly on account of the additive nature of Σ_{d | a(n)} d cd.

Figure 2 is an annotated log-log scatterplot of a(n) for 1 ≤ n ≤ 321. We color a(n+1) red if a(n) is prime.

Consider the divisor sum function σ(n). We observe that a(n+1) ≥ σ(m), remaining close to σ(m).

Figure 3 is an annotated log-log scatterplot of a(n) for 1 ≤ n ≤ 64. We use a color function to indicate the number of divisors τ(m) for m = a(n − 1).

Figure 4 is an annotated log-log scatterplot of a(n) for 1 ≤ n ≤ 64. We use a color function to indicate the index i of the least number b of same prime signature as m = a(n − 1) as a means to understand the prime decomposition of m.

Figure 5 is a list of primitive prime signatures A025487(i) found in the first 321 terms of a. The dot diagrams function as a histogram of multiplicities of primes, sorted greatest to least. The bold numbers are the indices i and the italic numbers are A025487(i).

 

 

This concludes our examination.

Appendix:

Table A lists the first 100 terms of sequence a. The column asterisked places "1" for the empty product, "p" for prime a(n), and "*" for squarefree semiprimes. Column i is the index in A025487 that corresponds to the prime decomposition of a(n), and the column following that is A025487(i), the smallest number that has the same prime signature as a(n). The last column attempts to succinctly compactify the prime power decomposition of a(n) via row a(n) of A287352 (π-code).

  n                   a(n)  *     i A25487(i)  A287352(a(n))
------------------------------------------------------------
  1                     1   1     1        1   0
  2                     2   p     2        2   1
  3                     5   p     2        2   3
  4                     9         3        4   2.0
  5                    17   p     2        2   7
  6                    23   p     2        2   9
  7                    30   *     9       30   1.1.1
  8                    89   p     2        2   24
  9                    98         6       12   1.3.0
 10                   184         8       24   1.0.0.8
 11                   399   *     9       30   2.2.4
 12                   664         8       24   1.0.0.22
 13                  1292        13       60   1.0.6.1
 14                  2587   *     4        6   6.40
 15                  2814   *    22      210   1.1.2.15
 16                  6619   p     2        2   855
 17                  6636        29      420   1.0.1.2.18
 18                 18120        36      840   1.0.0.1.1.33
 19                 54896        24      240   1.0.0.0.14.6
 20                110193   *     9       30   2.7.242
 21                153492        13       60   1.0.1.1523
 22                358310   *     9       30   1.2.3803
 23                645055   *     4        6   3.12075
 24                774115   *     4        6   3.14256
 25                928993        13       60   6.0.3.43
 26               1054187   *     4        6   7.6227
 27               1116276        66     4620   1.0.1.2.21.8
 28               3029874   *    22      210   1.1.17.936
 29               6151929   *    22      210   2.2.17.533
 30               9505403   *     4        6   21.12157
 31               9635864        17      120   1.0.0.3.15668
 32              20648677   *     9       30   4.34.2036
 33              23744657   p     2        2   1492085
 34              23744691        17      120   2.0.0.26.1002
 35              35510476        29      420   1.0.29.24.11
 36              63144245   *     9       30   3.26.10922
 37              76468986        66     4620   1.1.0.3.26.405
 38             182228133   *     4        6   2.3603587
 39             242970925         6       12   3.0.647204
 40             301284052         6       12   1.0.4412061
 41             527247212         6       12   1.0.7475182
 42             922682749   p     2        2   47109485
 43             922682792        17      120   1.0.0.9.281669
 44            1789687069   *     4        6   312.68405
 45            1790554184        36      840   1.0.0.16.24.2343
 46            3433428185   *    22      210   3.2.31.34837
 47            4524447595   *    22      210   3.98.86.47
 48            5447808380        66     4620   1.0.2.1.239.2539
 49           13083732936       112    27720   1.0.0.1.0.43.29.292
 50           35724906776        36      840   1.0.0.5.19.252814
 51           72880531169   *     9       30   63.123.18950
 52           73184200371        29      420   2.0.5.483.12195
 53          111961478488        36      840   1.0.0.12.62.71247
 54          215615610241   *     4        6   1139.1474811
 55          215639089126   *     9       30   1.223.4436548
 56          323685945609   *    54     2310   2.4.3.62.80073
 57          486362016603        13       60   2.0.367.1355406
 58          702801614161   *     9       30   172.539.11241
 59          703625918242   *    54     2310   1.5.4.3.1434109
 60         1204499102079   *    54     2310   2.2.2.2828.12781
 61         1976702232450       140    60060   1.1.1.0.2.44.366414
 62         5371437992314   *     4        6   1.97380324841
 63         8057156988592        47     1680   1.0.0.0.12.1279.88674
 64        15993014320099   *     4        6   22576.3668578
 65        15993076891064        83     9240   1.0.0.3.2.452.460736
 66        36918458520028        29      420   1.0.7.1.929390290
 67        70964542696933   p     2        2   2299682202677
 68        70964542697001   *     9       30   2.2486.54027766
 69        94623654599168       135    53760   1.0.0.0.0.0.0.0.0.71.519.10623
 70       189634543148505   *   246   510510   2.1.1.2.10.354.80740
 71       380630800651340        29      420   1.0.2.7.25078491044
 72       826887601416910   *   246   510510   1.2.2.16.9.827.11899
 73      1660776753512567   *    22      210   9.55.711.2403134
 74      1738852402360531   *     4        6   21.800255166674
 75      1762672298283718   *     4        6   1.26402734874534
 76      2644008447425725         6       12   3.0.3383476881293
 77      3278570474808131   *     4        6   83222.147891573
 78      3278573552832629   *     4        6   14.2465088761164
 79      3354819449410254   *    54     2310   1.1.2.26922.13977079
 80      7668183374333148       140    60060   1.0.1.30.133.420.90305
 81     18051715638367929       140    60060   2.0.2.12.30.1427.161434
 82     30516976556354361   *     4        6   2.283914755574938
 83     40689302075139309   *    54     2310   2.10.81.10225.462356
 84     55833618657613217         6       12   17.0.546131076714
 85     56795990711468321   *     9       30   36.31856.50976764
 86     57172275665472387   *     9       30   2.2.78891085094111
 87     87119658156910790   *     9       30   1.2.244212627560152
 88    156815384682439753   *     9       30   16.114.144225089321
 89    159992138466234122   *    22      210   1.23.2263.1892959251
 90    242696700105595456        74     6720   1.0.0.0.0.0.3.474.6454087427
 91    550563757314232279   *     4        6   1457.1488592721323
 92    550609022771558867   *     4        6   22569723.42523836
 93    550609024493197652        29      420   1.0.347.52.941038525
 94    964328032845270515   *     9       30   3.444402.1286981732
 95   1157193817632780899   *     4        6   33432379.55457969
 96   1157193820076048495   *    22      210   3.3.4.18592485425051
 97   1547017732939866724        29      420   1.0.9.168803.271563147
 98   2800636774575386847   *     9       30   2.205.21990476959740
 99   3737101977020068022   *    54     2310   1.24.47.85471.2852813
100   5679224100788214644        13       60   1.0.182484.21896351080
...

Code 1: Generate a(n):

Block[{a = {1}, c},
  c[1] = 1;
    Do[(Map[If[! IntegerQ[c[#] ], Set[c[#], 1], c[#]++] &, #];
      AppendTo[a, Total[Map[# c[#] &, #]] ] ) &@ Divisors[a[[-1]] ], 100]; a]]

Concerns OEIS sequences:

A000005: Divisor counting function τ(n).
A007497: a(1) = 2, a(n) = σ(a(n−1)).
A025487: Products of primorials; numbers that are the least instance of a given prime signature.
A027750: Row n contains the divisors d | n.
A046523: Numbers m that are the least number of the same prime signature as n.
A342616: a(1) = 1; a(n+1) = Σ_{d | a(n)} cd, where cd is the number of instances of d | a(k) for 1 ≤ k < n.

Document Revision Record.

2021 0318 2215 Draft.
2021 0406 2100 Publish.